
Comp 521 – Files and Databases Fall 2014 1

Overview of
Query Evaluation

Chapter 12

Comp 521 – Files and Databases Fall 2014 2

Overview of Query Evaluation
!  Query: SELECT M.title

 FROM Movie M, Role R
 WHERE M.mid=R.mid
 AND R.role=‘Batman’ AND R.year > 2000

!  Plan: Tree of relational algebra ops, with an algorithm for each
"  Each “pulls” tuples from tables via “access paths”
"  An access path might involve an index, iteration,

sorting, or other approaches.
!  Two main issues in query optimization:

"  For a given query, what plans are considered?
"  Algorithm to search plan space for cheapest

(estimated) plan.
"  How is the cost of a plan estimated?

!  Ideally: Want to find optimal plan.
!  Practically: Want to avoid poor plans!

Movie Role

 mid=mid

σrole=‘Batman’ year > 2000

Πtitle

Comp 521 – Files and Databases Fall 2014 3

Some Common Techniques

!  Algorithms for evaluating relational operators
use some simple ideas extensively:
"  Indexing: Can use WHERE conditions to retrieve

small subset of tuples (selections, joins)
"  Iteration: Sometimes, faster to scan all tuples even if

there is an index. (And sometimes, we can scan the
data entries in an index instead of the table itself.)

"  Partitioning: By using sorting or hashing, we can
partition the input tuples and replace an expensive
operation by similar operations on smaller inputs.

* Watch for these techniques as we discuss query evaluation!

Comp 521 – Files and Databases Fall 2014 4

Statistics and Catalogs
!  Need information about the relations and

indexes involved.
!  Catalogs typically contain at least:

"  # tuples (NTuples) and # pages (NPages) for each relation.
"  # distinct key values (NKeys) and NPages for each index.
"  Index height, low/high key values (Low/High) for each tree

index.

!  Catalogs updated periodically.
"  Updating whenever data changes is too expensive; lots of

approximation anyway, so slight inconsistency ok.

!  More detailed information (e.g., histograms of
the values in some field) are sometimes stored.

Comp 521 – Files and Databases Fall 2014 5

Today’s Working Example
!  Consider database with the following two tables:

 Movie(mid: integer, title: string, year: integer, rating: text)
Role(mid: integer, aid: integer, role: text, billing: integer)

!  Assume each tuple of Role is 40 bytes, a page
holds, at most, 100 records, each Movie tuple is
50 bytes, and a page holds no more than 80 records

!  Furthermore, assume
1000 pages of Roles (< 100,000 records), and
500 pages of Movies (< 40, 000 records)

Comp 521 – Files and Databases Fall 2014 6

Example’s Catalog

!  The system catalog is itself a
collection of relations/tables
(ex. Table attributes, table
statistics, etc.)

!  Catalog tables can be
queried just like any other
table

!  Relational algebra
operations can be used to
examine Query evaluation
tradeoffs

Attribute_Cat

attr_name rel_name type position

attr_name Attribute_Cat string 1

rel_name Attribute_Cat string 2

type Attribute_Cat string 3

postion Attribute_Cat integer 4

mid Movie integer 1

title Movie string 2

year Movie integer 3

rating Movie integer 4

mid Role integer 1

aid Role integer 2

role Role string 3

billing Role integer 4

Attribute_Cat(attr_name: string, rel_name: string, type: string, position: integer)

Comp 521 – Files and Databases Fall 2014 7

Access Paths
!  An access path is a method of retrieving tuples:

"  File scan, or index search that matches the given query’s selection

!  A tree index matches (a conjunction of) terms that involve
 only attributes in a prefix of the search key.
"  E.g., Tree index on <a, b, c> matches the selection a=5 AND b=3,

and a=5 AND b>6, but not b=3.

!  A hash index matches (a conjunction of) terms that has a
 term attribute = value for every attribute in the search key of
 the index.
"  E.g., Hash index on <a, b, c> matches a=5 AND b=3 AND c=5;

but it does not match b=3, or a=5 AND b=3, or a>5 AND b=3 AND c=5.

Comp 521 – Files and Databases Fall 2014 8

A Note on Complex Selections

!  Convert selections to “sum of products” form

!  “AND” terms allow us to optimally choose indices
“OR” terms can be tested sequentially in iterations.

(mid=130893 AND role=‘Batman’) OR
(mid=320833 AND role=‘Batman’) OR
(mid=130893 AND role=‘Robin’) OR
(mid=320833 AND role=‘Robin’)

(mid=130893 OR mid=320833) AND
(role=‘Batman’ OR role=‘Robin’)

Comp 521 – Files and Databases Fall 2014 9

One Approach to Selections
!  Find the most selective access path, retrieve tuples using

it, and apply any remaining unmatched terms
"  Most selective access path: Either an index traversal or file

scan that we estimate requires the fewest page I/Os.
"  Terms that match this index reduce the number of tuples

retrieved; other unmatched terms are used to discard tuples,
but do not affect number of tuples/pages fetched.

"  Consider year > 2000 AND aid=70626 AND billing=1.
•  A B+ tree index on Movie(year) can be used;

then, aid=70626 and billing=1 checked after join with Role.
•  Similarly, a hash index on Role(aid) could be used;

then filtered for billing=1, and joined with Movie
Which is faster?

Comp 521 – Files and Databases Fall 2014 10

Using an Index for Selections
!  Cost depends on #qualifying tuples,

and clustering.
"  Cost of finding qualifying data entries (typically small)

plus cost of retrieving records (could be large w/o
clustering).

"  For example, assuming uniform distribution of roles,
about 10% of tuples qualify (100 pages, 10000 tuples).
With a clustered index, cost is little more than 100 I/Os;
if unclustered, upto 10000 I/Os!

SELECT *
FROM Roles R
WHERE R.role < ‘C%’

Comp 521 – Files and Databases Fall 2014 11

Projection
!  Expensive part is eliminating duplicates.

"  SQL systems don’t remove
duplicates unless the keyword
DISTINCT is specified.

!  Sorting Approach
"  Sort on <mid, aid> and remove duplicates.

(Can optimize by dropping unwanted attributes while sorting.)

!  Hashing Approach
"  Hash on <mid, bid> during scan to create partitions.

Tracks <mid,bid> tuples seen so far, compares to only a subset.

!  With a B+-tree indexed on <mid, aid>, you can step
through the leafs compressing duplicates

!  With a Hash Index on <mid, aid>, scan page for copies

SELECT DISTINCT mid, aid
FROM Roles

Comp 521 – Files and Databases Fall 2014 12

Join: Index Nested Loops

!  If there is an index on the join attribute of one relation
(say S), make it the inner loop to exploit the index.
"  Cost: M + ((M*pR) * cost of finding matching S tuples)
"  M=#pages of R, pR=# R tuples per page

!  For each R tuple, cost of probing S index is ~1.2 for hash
index, 2-4 for B+ tree. Cost of then finding S tuples
(assuming Alt. (2) or (3) for data entries) depends on
clustering.
"  Clustered index: 1 I/O total (typical)
"  Unclustered: upto 1 I/O per matching S tuple.

foreach tuple r in R:
 foreach tuple s in S:
 if ri op sj add <r, s> to result

Comp 521 – Files and Databases Fall 2014 13

Examples of Index Nested Loops
!  Hash-index (Alt. 2) on mid of Movie (as inner):

"  Scan Roles: 1000 page I/Os, 100*1000 tuples.
"  For each Roles tuple: 1.2 I/Os to get data entry in index, plus 1 I/O to

get (exactly one) matching Movie tuple.
"  Total: 1000 + (1+1.2)*100000 = 221,000 I/Os.

!  Hash-index (Alt. 2) on mid of Roles (as inner):
"  Scan Movie: 500 page I/Os, 80*500 tuples.
"  For each Movie tuple: 1.2 I/Os to find index page with data entries,

plus cost of retrieving matching Roles tuples. Assuming uniform
distribution, 2.5 roles per movie (100,000 / 40,000). Cost of retrieving
them is 1 or 2.5 I/Os depending on whether the index is clustered.

"  Total: 500 + (1.2 + 1)*40000 = 88,500 I/Os (clustered)
 500 + (1.2 + 2.5)*40000 = 148,500 I/Os (unclustered)

Comp 521 – Files and Databases Fall 2014 14

Join: Sort-Merge (R S)
!  Sort R and S on the join column
!  Scan them while “merging” (on join col.)

and outputting resulting tuples.
"  Advance scan of R until current R-tuple >= current S tuple,

then advance scan of S until current S-tuple >= current R tuple;
do this until current R tuple = current S tuple.

"  At this point, all R tuples with same value in Ri (current R group)
and all S tuples with same value in Sj (current S group) match;
output <r, s> for all pairs of such tuples.

"  Then resume scanning R and S.

!  R is scanned once; each S group is scanned once
per matching R tuple. (Multiple scans of an S
group are likely to find needed pages in buffer.)

i=j

Comp 521 – Files and Databases Fall 2014 15

Example of Sort-Merge Join

!  Cost: M log M + N log N + (M+N)
"  The cost of scanning, M+N, could be M*N (very unlikely!)

!  With 35, 100, or 300 buffer pages, both Roles and
Movie can be sorted in 2 passes; total join cost: 7500.

Note importance of out-of-core
 external sorting (Next lecture’s topic)

mid title year rating

3102 The Dark Knight Rises 2012 PG-13

34102 The Dark Knight 2008 PG-13

51427 Batman Begins 2005 PG-13

152371 Batman Revealed 2012

320833 Batman Evolution 2014

mid aid role billing

3102 70626 Bruce Wayne 1

34102 70626 Bruce Wayne 1

48670 70626 Jack Kelly 1

51427 70626 Bruce Wayne 1

113303 70626 John Conner 1

142162 70626 John Preston 1

142164 70626 John Miller 1

Comp 521 – Files and Databases Fall 2014 16

Highlights of Query Optimization
!  Cost estimation: Approximate art at best.

"  Statistics, maintained in system catalogs, used to estimate
cost of operations and result sizes.

"  Considers combination of CPU and I/O costs.

!  Plan Space: Too large, must be pruned.
"  Only the space of left-deep plans is considered.

• Left-deep plans allow output of each operator to be pipelined into
the next operator without storing it in a temporary relation.

"  Actual Cartesian products avoided.

Comp 521 – Files and Databases Fall 2014 17

Cost Estimation
!  For each plan considered,

we must estimate cost:
"  Cost of each operation in tree.

• Depends on input cardinalities.
• We’ve already discussed how to estimate

the cost of operations (sequential scan,
index scan, joins, etc.)

"  Must also estimate size of result
for each operation in tree!

• Use information about the input relations.
• For selections and joins, assume

independence of predicates.

RA Tree:

SELECT M.title
FROM Movie M, Role R
WHERE M.mid=R.mid AND
 R.role=‘Batman’ AND M.year>2000

Movie Role

 mid=mid

σrole=‘Batman’ year > 2000

Πtitle

Comp 521 – Files and Databases Fall 2014 18

Size Estimation and Reduction Factors

!  Consider a query block:
!  Maximum # tuples in

result is the product of
the cardinalities of relations in the FROM clause.

!  Reduction factor (RF) associated with each term reflects
the impact of the term in reducing result size.
Result cardinality = Max # tuples * RF1 * RF2 * … RFk.
"  Implicit assumption that terms are independent!
"  Term col=value has RF 1/NKeys(I), given index I on col
"  Term col1=col2 has RF 1/MAX(NKeys(I1), NKeys(I2))
"  Term col>value has RF (High(I)-value)/(High(I)-Low(I))

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

Comp 521 – Files and Databases Fall 2014 19

Motivating Example

!  Cost: 500+500*1000 I/Os
!  By no means the worst plan!
!  Misses several opportunities:

selections could have been
“pushed” earlier, no use is made
of any available indexes, etc.

!  Goal of optimization: To find
more efficient plans that
compute the same answer.

Plan:

(outer) (inner)

SELECT M.title
FROM Movie M, Role R
WHERE M.mid=R.mid AND
 R.role=‘Batman’ AND M.year>2000

Movie Role

 mid=mid

σrole=‘Batman’ year > 2000

Πtitle

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)

Comp 521 – Files and Databases Fall 2014 20

Alternative Plan 1 (No Indexes)
!  Main difference: Push selects.
!  With 5 buffers, cost of plan:

"  Scan Roles (1000) +
write temp T1 (3 pages,
we have 237 “Batman”
roles).

"  Scan Movie (500) +
write temp T2 (250 pages,
about half of pages).

"  Sort T1 (3), sort T2 (2*4*250), merge (3+250)
"  Total: 2256 page I/Os.

!  If we used BNL join, join cost = 3+4*250, total cost = 1003.
!  If we `push’ projections, T1 has only mid, T2 only mid and title:

"  T1 fits in 1 page, cost of BNL drops to under 250 pages, total < 250.

Roles Movie

mid=mid

σrole=‘Batman’

Πtitle
(On-the-fly)

σyear > 2000 (Scan and
 write to T1)

(Sort-Merge Join)

(Scan and
 write to T2)

Comp 521 – Files and Databases Fall 2014 21

Alternative Plan 2 (With Indexes)
!  With clustered index on mid of

Roles, we get 100,000/100 = 1000
tuples on 1000/100 = 10 pages.

!  INL with pipelining (outer is not
materialized).

❖  Decision not to push rating>5 before the join is based on
 availability of mid index on Movie.
❖  Cost: Selection of Roles tuples (10 I/Os); for each,
 must get matching Movie tuple (1000*1.2); total 1210 I/Os.

❖  Join column mid is a key for Movie.
– At most one matching tuple,
unclustered index on mid OK.

–  Projecting out unnecessary
 fields from outer doesn’t help.

Roles

Movie

mid=mid

σrole=‘Batman’

sname
(On-the-fly)

year > 2000

(Use hash
 index; do
 not write
 result to
 temp)

(Index Nested Loops,
with pipelining)

(On-the-fly)

Comp 521 – Files and Databases Fall 2014 22

Practical Example

$ sqlite3 movies.db
SQLite version 3.7.13 2012-07-17 17:46:21
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> EXPLAIN QUERY PLAN
 ...> SELECT R.role, A.first, A.last, M.title
 ...> FROM Role R, Actor A, Movie M
 ...> WHERE R.aid=A.aid AND R.mid=M.mid AND R.role like "%Batman%";
0|0|0|SCAN TABLE Role AS R (~500000 rows)
0|1|1|SEARCH TABLE Actor AS A USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)
0|2|2|SEARCH TABLE Movie AS M USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)
sqlite> EXPLAIN QUERY PLAN
 ...> SELECT R.role, A.first, A.last, M.title
 ...> FROM Role R, Actor A, Movie M
 ...> WHERE R.aid=A.aid AND R.mid=M.mid AND M.title="Batman";
0|0|2|SCAN TABLE Movie AS M (~100000 rows)
0|1|0|SEARCH TABLE Role AS R USING INDEX RoleMid (mid=?) (~10 rows)
0|2|1|SEARCH TABLE Actor AS A USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)
sqlite>

Comp 521 – Files and Databases Fall 2014 23

Summary
!  There are several alternative evaluation algorithms for

each relational operator.
!  A query is evaluated by converting it to a tree of

operators and evaluating the operators in the tree.
!  Must understand query optimization in order to fully

understand the performance impact of a given database
design (relations, indexes) on a workload (set of queries).

!  Two parts to optimizing a query:
"  Consider a set of alternative plans.

•  Must prune search space; typically, left-deep plans only.

"  Must estimate cost of each plan that is considered.
•  Must estimate size of result and cost for each plan node.
•  Key issues: Statistics, indexes, operator implementations.

