
Comp 521 – Files and Databases                                       Fall 2014 1 

Database Application 
Development 

Chapter 6.1-6.4 



Comp 521 – Files and Databases                                       Fall 2014 2 

Overview 

Concepts covered in this lecture: 
! SQL in application code 
! Embedded SQL 
! Cursors 
! Dynamic SQL 
! sqlite3 in Python 



Comp 521 – Files and Databases                                       Fall 2014 3 

Using databases within programs 

!  Often need to access databases from 
programming languages  
(file alternative, shared data)  

!  SQL is a direct query language; as such,  
it has limitations. 

!  Standard programming languages: 
"  Complex computational processing of the data. 
"  Specialized user interfaces. 
"  Logistics and decision making 
"  Access to more than one database at a time. 



Comp 521 – Files and Databases                                       Fall 2014 4 

SQL in Application Code 
!  Most often SQL commands are called from 

within a host language (e.g., Java or Python) 
program. 

"  SQL statements can reference and modify host 
language variables (including special variables 
used to return results and status). 

"  Must include an API to connect to, issue queries, 
modify, and update databases. 



Comp 521 – Files and Databases                                       Fall 2014 5 

SQL in Application Code (Contd.) 
Impedance mismatch:  
!  Differences in the data models used by SQL 

and programming languages 
!  SQL relations are (multi-) sets of tuples, with 

no a priori bound on the number of tuples. 
!  No such data structure exist in traditional 

procedural programming languages such as 
C++.  (Though now: Python) 

!  SQL language interfaces often support a 
mechanism called a cursor to handle this. 



Comp 521 – Files and Databases                                       Fall 2014 6 

Desirable features of such systems: 
!  Ease of use. 

!  Conformance to standards for existing 
programming languages, database query 
languages, and development environments. 

!  Interoperability: the ability to use a common 
interface to diverse database systems on 
different operating systems 



Comp 521 – Files and Databases                                       Fall 2014 7 

Vendor specific solutions 
!  Oracle PL/SQL: A proprietary PL/1-like language 

which supports the execution of SQL queries: 
!  Advantages: 

"  Many Oracle-specific features, higher performance, tight 
integration. 

"  Performance may be optimized by analyzing both the 
queries and the surrounding program logic. 

!  Disadvantages: 
"  Ties the applications to a specific DBMS. 
"  The application programmer must depend upon the vendor 

for the application development environment.  
"  It may not be available for all platforms. 



Comp 521 – Files and Databases                                       Fall 2014 8 

Oracle PL Example 

PROCEDURE withdraw(acct NUMBER(10), debit_amount NUMBER(6.2)) IS !
   acct_balance NUMBER(11,2); !
BEGIN !
   SELECT bal INTO acct_balance FROM accounts !
      WHERE account_id = acct !
      FOR UPDATE OF bal; !
   IF acct_balance >= debit_amt THEN !
      UPDATE accounts SET bal=bal-debit_amt WHERE account_id=acct; !
   ELSE !
      INSERT INTO audit VALUES !
            (acct,acct_balance,debit_amount,’Insufficient funds’); !
   END IF; !
   COMMIT; !
END withdraw; !

A PL program to process a bank transaction. It makes sure the 
account has sufficient funds to cover the withdrawal before 
updating it. If not, the program inserts a record into an audit table. 



Comp 521 – Files and Databases                                       Fall 2014 9 

Another PL Example 

DECLARE !
   salary         emp.sal%TYPE := 0; !
   mgr_num        emp.mgr%TYPE; !
   last_name      emp.ename%TYPE; !
   starting_empno emp.empno%TYPE := 10000; !
BEGIN !
   SELECT mgr INTO mgr_num FROM emp !
      WHERE empno = starting_empno; !
   WHILE salary <= 250000 LOOP !
      SELECT sal, mgr, ename INTO salary, mgr_num, last_name!
         FROM emp WHERE empno = mgr_num; !
   END LOOP; !
   INSERT INTO overpaid VALUES (last_name, salary); !
   COMMIT; !
EXCEPTION !
   WHEN NO_DATA_FOUND THEN !
      INSERT INTO overpaid VALUES ('None found’, NULL); !
      COMMIT; !
END; !

The following example finds the first employee with a salary over 
$250000 with employee number greater than 10000: 



Comp 521 – Files and Databases                                       Fall 2014 10 

Vendor Independent solutions  
based on SQL 
Three basic strategies: 

"  Embed SQL in the host language 
(Embedded SQL, SQLJ)  

• SQL code appears inline with other host-language code 
• Calls are resolved at compile time 

"  SQL call-level interfaces (Dynamic SQL) 
• Wrapper functions that pass SQL queries as strings from 

the host language to a separate DBMS process 

"  SQL modules or libraries 



Comp 521 – Files and Databases                                       Fall 2014 11 

Embedded SQL 

!  Approach: Embed SQL in the host language. 
"  A preprocessor converts the SQL statements into 

special API calls. 
"  Then a regular compiler is used to compile the 

code. 
!  Language constructs: 

"  Connecting to a database: 
EXEC SQL CONNECT 

"  Declaring variables:  
EXEC SQL BEGIN (END) DECLARE SECTION 

"  Statements: 
EXEC SQL Statement; 



Comp 521 – Files and Databases                                       Fall 2014 12 

Embedded SQL: Variables 
#  There is a need for the host language to share 

variable with the database’s SQL interface: 

EXEC SQL BEGIN DECLARE SECTION 
char c_sname[20]; 
long c_sid; 
short c_rating; 
float c_age; 
EXEC SQL END DECLARE SECTION 

!  Two special “error” variables: 
"  SQLCODE (long, is negative if an error has occurred) 
"  SQLSTATE (char[6], predefined codes for common errors) 



Comp 521 – Files and Databases                                       Fall 2014 13 

Cursors 

!  Can declare a cursor on a relation or query 
statement (which generates a relation). 

!  Can open a cursor, and repeatedly fetch tuples 
and move the cursor as a side-effect, until all 
tuples have been retrieved. 

!  In some cases, you can also modify/delete 
tuple pointed to by a cursor, and changes are 
reflected in the database 



Comp 521 – Files and Databases                                       Fall 2014 14 

Embedded Database Use 
!  Loading a table 

EXEC SQL 
INSERT INTO Sailors  

VALUES(:c_sname, :c_sid, :c_rating, :c_age); 
!  Executing a query 

DECLARE sinfo CURSOR FOR 
SELECT S.sname, S.age 
FROM Sailors S 
WHERE S.rating > 6 

OPEN sinfo; 
do { 

 FETCH sinfo INTO :c_name, :c_age; 
   /* do stuff */ 
} while (SQLSTATE != NO_DATA);     /* NO_DATA == “02000” */ 
CLOSE sinfo; 



Comp 521 – Files and Databases                                       Fall 2014 15 

Disadvantages: 

!  Directives must be preprocessed, with subtle 
implications for code elsewhere    

!  It is a real pain to debug preprocessed 
programs. 

!   The use of a program-development 
environment is compromised substantially. 

!  The preprocessor is “compiler vendor” and 
“platform” specific. 



Comp 521 – Files and Databases                                       Fall 2014 16 

Dynamic SQL 
!  SQL query strings are not always known at compile 

time (e.g., spreadsheet, graphical DBMS frontend): 
Allow construction of SQL statements on-the-fly 

!  Example: 
char c_sqlstring[]= 

{“DELETE FROM Sailors WHERE rating>5”}; 
EXEC SQL PREPARE readytogo FROM :c_sqlstring; 
EXEC SQL EXECUTE readytogo; 



Comp 521 – Files and Databases                                       Fall 2014 17 

SQL Package and Libraries 

!  In the package approach, invocations to SQL are 
made via libraries of procedures , rather than via 
preprocessing 

!  Special standardized interface: procedures/objects 

!  Pass SQL strings from language, presents result sets 
in a language-friendly way 

!  Supposedly DBMS-neutral  
"  a “driver” traps the calls and translates them into DBMS-

specific code 
"  database can be across a network 



Comp 521 – Files and Databases                                       Fall 2014 18 

Example module based 
!  Python’s built-in SQLite package 

"  Add-ons for  
• MySQL (MySQL for Python),  
• Oracle (Oracle+Python, cx_Oracle) 
• Postgres (PostgreSQL) 
•  etc. 

!  Sun’s JDBC: Java API 
!  Part of the java.sql package 



Comp 521 – Files and Databases                                       Fall 2014 19 

Get names of sailors who’ve reserved  
a red boat, by rating in alphabetical order 

!  First, one more SQL feature 

!  Note that the ORDER BY clause determines the 
order that query results are returned 

!  Can use multiple attribute names to resolve ties 
!  Optional ASC or DESC keyword after attribute for 

ascending or descending order respectively 

 SELECT  S.sname, S.rating 
 FROM  Sailors S, Boats B, Reserves R 
 WHERE  S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’ 
 ORDER BY  S.rating DESC, S.sname ASC 



Comp 521 – Files and Databases                                       Fall 2014 20 

Verdict on SQL Modules 
!  Advantages over embedded SQL: 

"  Cleaner separation of SQL from the host 
programming language. 

"  Debugging is much more straightforward, since 
no preprocessor is involved. 

!  Disadvantages: 
"  The module libraries are specific to the 

programming language and DBMS environment. 
Thus, portability is somewhat compromised. 



Comp 521 – Files and Databases                                       Fall 2014 21 

Python and SQL Data Types 

Python type SQLite type 

None NULL 
int INTEGER 
long INTEGER 
float REAL 
str (UTF8-encoded) TEXT 
unicode TEXT 
buffer BLOB 



Comp 521 – Files and Databases                                       Fall 2014 22 

SQLite type conversions to Python 

SQLite type Python type 

NULL None 

INTEGER int or long,  
depending on size 

REAL float 

TEXT depends on text_factory, 
 unicode by default 

BLOB buffer 



Comp 521 – Files and Databases                                       Fall 2014 23 

Embedding SQL in Python 
import sqlite3 
if __name__ == '__main__': 
    db = sqlite3.connect("sailors.db") 
    cursor = db.cursor() 

    cursor.execute("""SELECT s.sname, b.bname, r.day 
                      FROM Sailors s, Reserves r, Boats b 
                      WHERE s.sid=r.sid AND r.bid=b.bid 
                        AND b.color='red’ 
                      ORDER BY s.sname""") 

    print "     Name        Boat         Date” 
    for row in cursor: 
        print "%12s %12s %10s" % row 

    db.close() 



Comp 521 – Files and Databases                                       Fall 2014 24 

More Involved Example 
!  Increase after three or more reservations 
import sqlite3 
if __name__ == '__main__': 
    db = sqlite3.connect("sailors.db") 
    cursor = db.cursor() 
    print "BEFORE” 
    cursor.execute("SELECT * FROM Sailors") 
    for row in cursor: 
        print row 

    cursor.execute("""SELECT s.sid, COUNT(r.bid) AS reservations 
                      FROM Sailors s, Reserves r 
                      WHERE s.sid=r.sid 
                      GROUP BY s.sid 
     HAVING s.rating < 10""") 

     for row in cursor.fetchall(): 
        if (row[1] > 2): 
            cursor.execute("""UPDATE Sailors 
                              SET rating = rating + 1 
                              WHERE sid=%d""" % row[0]) 

    print "AFTER” 
    cursor.execute("SELECT * FROM Sailors") 
    for row in cursor: 
        print row 
    db.close() 

SQL could do
 more or less
 of the work in
 this simple
 example 



Comp 521 – Files and Databases                                       Fall 2014 25 

Where Python and SQL meet 
!  UGLY inter-language semantics 

"  Within SQL we can reference a relation’s attributes 
by its field name 

"  From the cursor interface we only see a tuple in 
which attributes are indexed by position 

"  Can be a maintenance nightmare 

!  Solution “Row-factories” 
"  Allows you to remap each relation to a local 

Python data structure  
(Object, dictionary, array, etc.)   

"  Built-in “dictionary-based” row factory 



Comp 521 – Files and Databases                                       Fall 2014 26 

With a Row-Factory 
import sqlite3 

if __name__ == '__main__': 
    db = sqlite3.connect("sailors.db") 
    db.row_factory = sqlite3.Row 
    cursor = db.cursor() 

    cursor.execute("""SELECT s.sid, COUNT(r.bid) as reservations 
                      FROM Sailors s, Reserves r 
                      WHERE s.sid=r.sid 
                      GROUP BY s.sid 
                      HAVING s.rating < 10""") 

    for row in cursor.fetchall(): 
        if (row['reservations'] > 2): 
            cursor.execute("""UPDATE Sailors 
                              SET rating = rating + 1 
                              WHERE sid=%d""" % row['sid']) 
    db.commit() 
    db.close() 

Must come before
 dependent cursor 

Must “commit” to
 make INSERTs  
and/or UPDATEs
 persistant 



Comp 521 – Files and Databases                                       Fall 2014 27 

Other SQLite in Python Features 
!  Alternatives to iterating over cursor 

"  Fetch the next tuple: 
  tvar = cursor.fetchone() 

"  Fetch N tuples into a list: 
  lvar = cursor.fetchmany(N) 

"  Fetch all tuples into a list: 
  lvar = cursor.fetchall() 

!  Alternative execution statement 
"  Repeat the same command over an iterator 
cursor.executemany(“SQL Statement”, args) 

"  Execute a list of ‘;’ separted commands 
cursor.executescript(“SQL Statements;”) 



Comp 521 – Files and Databases                                       Fall 2014 28 

Substitution 
!  Usually your SQL operations will need to use 

values from Python variables. You shouldn’t 
assemble your query using Python’s string 
formatters because doing so is insecure; it 
makes your program vulnerable to an SQL 
injection attack. 

!  Instead, use the DB-API’s parameter 
substitution. Put ‘?’ as a placeholder 
wherever you want to use a value, and then 
provide a tuple of values as the second 
argument to the cursor’s execute() method.  



Comp 521 – Files and Databases                                       Fall 2014 29 

With a Row-Factory 
import sqlite3 

if __name__ == '__main__': 
    db = sqlite3.connect("sailors.db") 
    db.row_factory = sqlite3.Row 
    cursor = db.cursor() 

    cursor.execute("""SELECT s.sid, COUNT(r.bid) as reservations 
                      FROM Sailors s, Reserves r 
                      WHERE s.sid=r.sid 
                      GROUP BY s.sid 
                      HAVING s.rating < 10""") 

    for row in cursor.fetchall(): 
        if (row['reservations'] > 2): 
            cursor.execute("""UPDATE Sailors 
                              SET rating = rating + 1 
                              WHERE sid=?"””, (row['sid'],)) 
    db.commit() 
    db.close() 



Comp 521 – Files and Databases                                       Fall 2014 30 

Extracting the dB’s Schema 
[~/Courses/Comp521_S10/Stuff]$ python 
Python 2.6.4 (r264:75706, Nov 12 2009, 00:21:44)  
[GCC 4.2.1 (Apple Inc. build 5646) (dot 1)] on darwin 
Type "help", "copyright", "credits" or "license" for more information. 
>>> import sqlite3 
>>> db = sqlite3.connect('Sailors.db') 
>>> cursor = db.cursor() 
>>> cursor.execute("SELECT * FROM sqlite_master WHERE type='table'") 
<sqlite3.Cursor object at 0x100430920> 
>>> for row in cursor: 
...     print row 
...  
(u'table', u'Sailors', u'Sailors', 2, u'CREATE TABLE Sailors( sid INTEGER, 
                                            sname STRING, 
                                            rating INTEGER, 
                                            age REAL)') 
(u'table', u'Boats', u'Boats', 3, u'CREATE TABLE Boats(   bid INTEGER, 
                                            bname STRING, 
                                            color STRING)') 
(u'table', u'Reserves', u'Reserves', 4, u'CREATE TABLE Reserves(sid INTEGER, 
                                            bid INTEGER, 

              day DATE)') 
>>>  



Comp 521 – Files and Databases                                       Fall 2014 31 

Next Time 
!  JDBC approach from

 embedding SQL  
!  Extra levels of

 indirection to
 translate between
 between a uniform
 database API and
 alternate DBMS
 backends  


