
Comp 521 – Files and Databases Fall 2014 1

Relational Algebra
and

Relational Calculus

Chapter 4

Comp 521 – Files and Databases Fall 2014 2

Formal Query Languages

!  What is the basis of Query Languages?
!  Two formal Query Languages form the basis

of “real” query languages (e.g. SQL):
"  Relational Algebra: Operational, it provides a

recipe for evaluating the query. Useful for
representing execution plans.

"  Relational Calculus: Lets users describe what they
want, rather than how to compute it. (Non-
operational, declarative.)

Comp 521 – Files and Databases Fall 2014 3

What is an “Algebra”
!  Set of operands and operations that they are

 “closed” under all compositions
!  Examples

"  Boolean algebra - operands are the logical values
 True and False, and operations include AND(),
 OR(), NOT(), etc.

"  Integer algebra - operands are the set of integers,
 operands include ADD(), SUB(), MUL(), NEG(), etc.
 many of which have special in-fix operator symbols
 (+,-,*,-)

!  In our case operands are relations, what are the
 operators?

Comp 521 – Files and Databases Fall 2014 4

Example Instances

!  “Sailors” and “Reserves”
relations for our examples.

!  We’ll use “named field
notation”, which assumes
that names of fields in query
results are “inherited” from
names of fields in query
input relations.

R1

S1

S2

Comp 521 – Files and Databases Fall 2014 5

Relational Algebra

!  Basic operations:
"  Selection () Selects a subset of rows from relation.
"  Projection () Deletes unwanted columns from relation.
"  Cross-product () Allows us to combine two relations.
"  Set-difference () Tuples in reln. 1, but not in reln. 2.
"  Union () Tuples in reln. 1 and in reln. 2.

!  Additional operations:
"  Intersection, join, division, renaming: Not essential, but

(very!) useful.

!  Since each operation returns a relation, operations
can be composed! (Algebra is “closed”.)

Comp 521 – Files and Databases Fall 2014 6

Projection

!  Deletes attributes that are not in
projection list.

!  Schema of result contains exactly
the fields in the projection list,
with the same names that they
had in the (only) input relation.

!  Projection operator has to
eliminate duplicates! (Why??)
"  Note: real systems typically

don’t do duplicate elimination
unless the user explicitly asks
for it. (Why not?)

Comp 521 – Files and Databases Fall 2014 7

Selection

!  Selects rows that satisfy
selection condition.

!  No duplicates in result!
(Why?)

!  Schema of result
identical to schema of
(only) input relation.

!  Result relation can be
the input for another
relational algebra
operation! (Operator
composition.)

€

σrating>8(S2)

Comp 521 – Files and Databases Fall 2014 8

Union, Intersection, Set-Difference

!  All of these operations take
two input relations, which
must be union-compatible:
"  Same number of fields.
"  ‘Corresponding’ fields

have the same type.
!  What is the schema of result?

Comp 521 – Files and Databases Fall 2014 9

Cross-Product
!  Each row of S1 is paired with each row of R1.
!  Result schema has one field per field of S1 and R1,

with field names `inherited’ if possible.
"  Conflict: Both S1 and R1 have a field called sid.

€

ρ (T(1→sid1,5→sid2),S1×R1)"  Renaming operator:

Comp 521 – Files and Databases Fall 2014 10

Joins
!  Condition Join:

!  Result schema same as that of cross-product.
!  Fewer tuples than cross-product, might be

able to compute more efficiently
!  Sometimes called a theta-join.

Comp 521 – Files and Databases Fall 2014 11

Joins

!  Equi-Join: A special case of condition join where
the condition c contains only equalities.

!  Result schema similar to cross-product, but only
one copy of fields for which equality is specified.

!  Natural Join: Equijoin on all common fields
 (no labels on bowtie).

Comp 521 – Files and Databases Fall 2014 12

Division

!  Not supported as a primitive operator, but useful for
expressing queries like:

 Find sailors who have reserved all boats.
!  Let A have 2 fields, x and y; B have only field y:

"  A/B =
"  i.e., A/B contains all x tuples (sailors) such that for every y

tuple (boat) in B, there is an xy tuple in A.
"  If the set of y values (boats) associated with an x value

(sailor) in A contains all y values in B, the x value is in A/B.

!  In general, x and y can be any lists of fields; y is the
list of fields in B, and x y is the list of fields of A.

Comp 521 – Files and Databases Fall 2014 13

Examples of Division A/B

A

B1
B2

B3

A/B1 A/B2 A/B3

Comp 521 – Files and Databases Fall 2014 14

Expressing A/B Using Basic Operators

!  Division is not essential; it’s just a useful shorthand.
"  (Also true of joins, but joins are so common that systems

implement joins specially.)

!  Idea: For A/B, compute all x values that are not
“disqualified” by some y value in B.
"  x value is disqualified if by attaching y value from B, we

obtain an xy tuple that is not in A.

Disqualified x values:

 A/B: disqualified tuples

Comp 521 – Files and Databases Fall 2014 15

Relational Algebra Examples
!  Assume the following extended schema:

"  Sailors(sid: integer, sname: string,
 rating: integer, age: real)

"  Reserves(sid: integer, bid: integer, day: date)
"  Boat(bid: integer, bname: string, bcolor: string)

!  Objective: Write a relational algebra
 expression whose result instance satisfies the
 specified conditions
"  May not be unique
"  Some alternatives might be more efficient (in

 terms of time and/or space)

Comp 521 – Files and Databases Fall 2014 16

Names of sailors who’ve reserved boat #103

!  Solution 1:

!  Solution 2:

!  Solution 3:

Comp 521 – Files and Databases Fall 2014 17

Names of sailors who’ve reserved a red boat

!  Information about boat color only available in
Boats; so need an extra join:

!  A more efficient solution:

€

π sname(πsid(πbid(σcolor='red 'Boats)▹◃Res)▹◃ Sailors)

A query optimizer can find this, given the first solution!

Comp 521 – Files and Databases Fall 2014 18

Sailors who’ve reserved a red or a green boat

!  Can identify all red or green boats, then find
sailors who’ve reserved one of these boats:

!  Can also define Tempboats using union! (How?)

!  What happens if is replaced by in this query?

Comp 521 – Files and Databases Fall 2014 19

Sailors who’ve reserved a red and a green boat

!  Previous approach won’t work! Must identify
sailors who’ve reserved red boats, sailors
who’ve reserved green boats, then find the
intersection (note that sid is a key for Sailors):

€

ρ (Tempred,π sid((σcolor='red 'Boats)▹◃ Reserves))

€

ρ (Tempgreen,π sid((σcolor='green'Boats)▹◃ Reserves))

Comp 521 – Files and Databases Fall 2014 20

Names of sailors who’ve reserved all boats

!  Uses division; schemas of the input relations
to / must be carefully chosen:

!  To find sailors who’ve reserved all ‘Interlake’ boats:

€

/πbid(σ bname='Interlake'Boats)
.....

Comp 521 – Files and Databases Fall 2014 21

Relational Calculus

!  Comes in two flavors: Tuple relational calculus (TRC)
and Domain relational calculus (DRC).

!  Calculus has variables, constants, comparison ops,
logical connectives and quantifiers.
"  TRC: Variables range over (i.e., get bound to) tuples.
"  DRC: Variables range over domain elements (= field values).
"  Both TRC and DRC are simple subsets of first-order logic.

!  Expressions in the calculus are called formulas with
unbound formal variables. An answer tuple is
essentially an assignment of constants to these
variables that make the formula evaluate to true.

Comp 521 – Files and Databases Fall 2014 22

A Fork in the Road
!  TRC and DRC are semantically similar
!  In TRC, tuples share an equal status as

variables, and field referencing can be used to
select tuple parts

!  In DRC, formal variables are explicit
!  In the book you will find extensive

discussions and examples of TRC Queries
(Sections 4.3.1) and a lesser treatment of DRC.

!  To even things out, in this lecture I will focus
on DRC examples

Comp 521 – Files and Databases Fall 2014 23

Domain Relational Calculus

!  Query has the form:

!  Answer includes all tuples <x1,x2,…,xn> that
 make the formula p(<x1,x2,…,xn>) true.

!  Formula is recursively defined, starting with
 simple atomic formulas (getting tuples from
 relations or making comparisons of values),
 and building bigger and better formulas using
 the logical connectives.

{<x1,x2,…,xn> | p(<x1,x2,…,xn>)}

Comp 521 – Files and Databases Fall 2014 24

DRC Formulas
!  Atomic formula:

"  <x1,x2,…,xn> ∈ Rname, or X op Y, or X op constant
"  op is one of

!  Formula:
"  an atomic formula, or
"  , where p and q are formulas, or
"  , where variable X is free in p(X), or
"  , where variable X is free in p(X)

∃X(p(X)) is read as “there exists
 a setting of the variable X such
 that p(X) is true”. ∀X(p(X)) is
 read as “for all values of X, p(X)
 is true”

Comp 521 – Files and Databases Fall 2014 25

Free and Bound Variables

!  The use of quantifiers ∃ X and ∀ X in a formula is
said to bind X.
"  A variable that is not bound is free.

!  Let us revisit the definition of a query:

!  There is an important restriction: the variables
 x1, ..., xn that appear to the left of ‘|’ must be
 the only free variables in the formula p(...).

{<x1,x2,…,xn> | p(<x1,x2,…,xn>)}

Comp 521 – Files and Databases Fall 2014 26

Examples
!  Recall the example relations from last lecture

sid sname rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

31 Lubber 8 55.5

32 Andy 8 25.5

58 Rusty 10 35.0

64 Horatio 7 35.0

71 Zorba 10 16.0

74 Horatio 9 35.0

85 Art 3 25.5

95 Bob 3 63.5

sid bid day

22 101 10/10/98

22 102 10/10/98

22 103 10/8/98

22 104 10/7/98

31 102 11/10/98

31 103 11/6/98

31 104 11/12/98

64 101 9/5/98

64 102 9/8/98

74 103 9/8/98

bid bname color

101 Interlake blue

102 Interlake red

103 Clipper green

104 Marine red

Sailors: Reservations: Boats:

Comp 521 – Files and Databases Fall 2014 27

Find sailors with ratings > 7

!  The condition <I,N,T,A> ∈ Sailors binds the domain
variables I, N, T and A to fields of any Sailors tuple.

!  The term, <I,N,T,A>, to the left of ‘|’ (which
should be read as such that) says that every tuple,
that satisfies T > 7 is in the answer.

!  Modify this query to answer:
"  Find sailors who are older than 18 or have a rating

under 9, and are called ‘Joe’.

{<I,N,T,A> | <I,N,T,A> ∈ Sailors ∧ T > 7}

Comp 521 – Files and Databases Fall 2014 28

Same query using TRC
!  Find all sailors with ratings above 7

!  Note, here S is a tuple variable

!  Here X is a tuple variable with 2 fields (name,
age). This query implicitly specifies projection
(π) and renaming (ρ) relational algebra
operators

{S | S ∈ Sailors ∧ S.rating > 7}

{X | S ∈ Sailors ∧ S.rating > 7 ∧ X.name = S.name ∧ X.age = S.age }

Comp 521 – Files and Databases Fall 2014 29

Sailors rated > 7 who reserved boat #103

!  We have used ∃ Ir, Br, D(…) as a shorthand for
 ∃ Ir(∃ Br(∃ D(…)))
!  Note the use of ∃ to find a tuple in Reserves

that ‘joins with’ () the Sailors tuples under
consideration.

{<I,N,T,A> | <I,N,T,A> ∈ Sailors ∧ T > 7 ∧
 ∃ Ir, Br, D(<Ir, Br, D> ∈ Reserves ∧
 Ir = I ∧ Br = 103)}

Comp 521 – Files and Databases Fall 2014 30

Find sailors rated > 7 who’ve
reserved a red boat

!  Observe how the parentheses control the scope of
each quantifier’s binding.

!  This may look cumbersome, but with a good user
interface, it is very intuitive. (MS Access, QBE)

{<I,N,T,A> | <I,N,T,A> ∈ Sailors ∧ T > 7 ∧
 ∃ Ir, Br, D(<Ir, Br, D> ∈ Reserves ∧ Ir = I ∧
 ∃ B, Bn, C(<B, Bn, C> ∈ Boats ∧ B = Br ∧ C = ‘red’))}

Comp 521 – Files and Databases Fall 2014 31

Names of all Sailors who have
reserved boat 103

!  Note that only the sname field is retained in
the answer and that only N is a free variable.

!  A more compact version
€

N ∃I ,T ,A I ,N ,T ,A ∈Sailor(){
∧∃Ir,Br,D Ir,Br,D ∈Reserves∧ Ir = I ∧Br = 103()}

€

N ∃I ,T ,A I ,N ,T ,A ∈ Sailor(){
∧∃D I ,103,D ∈ Reserves()}

Comp 521 – Files and Databases Fall 2014 32

Sailors who’ve reserved all boats
!  Recall how queries of this type

used of the “division” operator
in relational algebra

!  The trick is that we use “forall”
quantification (∀) in place of
“there exists” quantification (∃)

!  Domains of variables are
determined when they are bound

!  Think of it as considering each
variable’s “domain” of
independently in our substitution

bid bname color

101 Interlake blue

101 Interlake red

101 Interlake green

101 Clipper blue

101 Clipper red

101 Clipper green

101 Marine blue

101 Marine red

101 Marine green

102 Interlake blue

.

.

.

104 Marine green

104 marine red

Comp 521 – Files and Databases Fall 2014 33

!  Find all sailors I such that for each 3-tuple
either it is not a tuple in Boats or there is a tuple in
Reserves showing that sailor I has reserved it.

€

∃Ir,Br,D⎛

⎝

⎜
⎜
⎜
⎜

Ir,Br,D ∈Reserves∧I=Ir∧Br=B
⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⎞

⎠

⎟
⎟
⎟
⎟ ⎟

⎞

⎠

⎟
⎟
⎟
⎟
⎟

⎫

⎬

⎪
⎪

⎭

⎪
⎪

Sailors who’ve reserved all boats

Comp 521 – Files and Databases Fall 2014 34

Find sailors who’ve reserved all
boats (again!)

!  Simpler notation, same query. (Much clearer!)
!  To find sailors who’ve reserved all red boats:

.....

Comp 521 – Files and Databases Fall 2014 35

Unsafe Queries, Expressive Power

!  It is possible to write syntactically correct calculus
queries that have an infinite number of answers!
Such queries are called unsafe.
"  e.g.,

!  It is known that every query that can be expressed
in relational algebra can be expressed as a safe
query in DRC / TRC; the converse is also true.

!  Relational Completeness: Query language (e.g.,
SQL) can express every query that is expressible
in relational algebra/calculus.

€

< I ,N ,T ,A > < I ,N ,T ,A > ∉ Sailors{ }

Comp 521 – Files and Databases Fall 2014 36

Summary
!  Relational calculus is non-operational, and

users define queries in terms of what they
want, not in terms of how to compute it.
(Declarativeness.)

!  Algebra and safe calculus have same
expressive power, leading to the notion of
relational completeness.

