
Comp 521 – Files and Databases Fall 2012 1

Database Design and Tuning
Chapter 20

Comp 521 – Files and Databases Fall 2012 2

Overview

  After ER design, schema refinement, and the
definition of views, we have the conceptual and
external schemas for our database.

  The next step is to choose indexes, make clustering
decisions, and to refine the conceptual and external
schemas (if necessary) to meet performance goals.

  We must begin by understanding the workload:
  The most important queries and how often they arise.
  The most important updates and how often they arise.
  The desired performance for these queries and updates.

Comp 521 – Files and Databases Fall 2012 3

Decisions to Make

  What indexes should we create?
  Which relations should have indexes? What field(s) should

be the search key? Should we build several indexes?

  For each index, what kind of an index should it be?
  Clustered? Hash/tree?

  Should we make changes to the conceptual schema?
  Consider alternative normalized schemas? (Remember,

there are many choices in decomposing into BCNF, etc.)
  Should we “undo” some decomposition steps and settle for

a lower normal form? (Denormalization.)
  Horizontal partitioning, replication, views ...

Comp 521 – Files and Databases Fall 2012 4

Index Selection for Joins

  When considering a join condition:
  Hash index on inner relation is very good for

Index Nested Loops.
• Should be clustered if join column is not a key for

inner, and inner tuples need to be retrieved.
• Clustering less important if join is on key

  Clustered B+ tree on join column(s) good for
Sort-Merge. (saves a sort on one relation)

(We discussed indexes for single-table queries in Chapter 8.)

Comp 521 – Files and Databases Fall 2012 5

Example 1 – Optimize Query
SELECT E.ename, D.mgr
FROM Emp E, Dept D
WHERE D.dname=‘Toy’ AND E.dno=D.dno

Department Employee

dno=dno

dname=‘Toy’

ename,mgr
(On-the-fly)

(Block Nested Loop)

π

σ

As written:

Department Employee

dno=dno

dname=‘Toy’

ename,mgr
(On-the-fly)

dno, ename

(Index Nested Loop)

π

π σ

Optimized:

Comp 521 – Files and Databases Fall 2012 6

Example 2 – Create Index

  Hash index on D.dname supports ‘Toy’ selection.
  Given this, index on D.dno is not needed.

  Hash index on E.dno allows us to get matching (inner) Emp
tuples for each selected (outer) Dept tuple.

  What if WHERE included: `` ... AND E.age=25’’ ?
  Could retrieve Emp tuples using index on E.age, then join with Dept

tuples satisfying dname selection. Comparable to strategy that used
E.dno index.

  So, if E.age index is already created, this query provides much less
motivation for adding an E.dno index.

SELECT E.ename, D.mgr
FROM Emp E, Dept D
WHERE D.dname=‘Toy’ AND E.dno=D.dno

Comp 521 – Files and Databases Fall 2012 7

Example 3 – More precise SQL

SELECT E.ename, D.mgr
FROM Emp E, Dept D
WHERE E.sal >= 10000 AND E.sal <= 20000
 AND E.hobby=‘Stamps’ AND E.dno=D.dno

SELECT E.ename, D.mgr
FROM Emp E, Dept D
WHERE E.sal BETWEEN 10000 AND 20000
 AND E.hobby=‘Stamps’ AND E.dno=D.dno

Use of the
 BETWEEN
 operator is
 recommended; it
 allows the
 optimizer to
 recognize both
 parts of a range
 selection

Comp 521 – Files and Databases Fall 2012 8

Example 3 – Sometimes Unclear

  Clearly, Emp should be the outer relation.
  Suggests that we build a hash index on D.dno.

  What index should we build on Emp?
  B+ tree on E.sal could be used, OR an index on E.hobby could be used.

Only one of these is needed, and which is better depends upon the
selectivity of the conditions.

•  As a rule of thumb, equality selections more selective than range selections.

  As both examples indicate, our choice of indexes is guided by the
plan(s) that we expect an optimizer to consider for a query. Have to
understand optimizers!

SELECT E.ename, D.mgr
FROM Emp E, Dept D
WHERE E.sal BETWEEN 10000 AND 20000
 AND E.hobby=‘Stamps’ AND E.dno=D.dno

Comp 521 – Files and Databases Fall 2012 9

Clustering and Joins

  Clustering is especially important when accessing inner
tuples in INL.
  Should make index on E.dno clustered.

  Suppose that the WHERE clause is instead:
WHERE E.hobby=‘Stamps AND E.dno=D.dno
  If many employees collect stamps, Sort-Merge join may be worth

considering. A clustered index on D.dno would help.

  Summary: Clustering is useful whenever many tuples are to
be retrieved.

SELECT E.ename, D.mgr
FROM Emp E, Dept D
WHERE D.dname=‘Toy’ AND E.dno=D.dno

Comp 521 – Files and Databases Fall 2012 10

Tuning the Conceptual Schema
  The choice of conceptual schema should be guided by

the workload, in addition to redundancy issues:
  We may settle for a 3NF schema rather than BCNF.
  Workload may influence the choice we make in decomposing

a relation into 3NF or BCNF.
  We may further decompose a BCNF schema!
  We might denormalize (i.e., undo a decomposition step), or we

might add fields to a relation.
  We might consider horizontal decompositions.

  If such changes are made after a database is in use,
called schema evolution; might want to mask some of
these changes from applications by defining views.

Comp 521 – Files and Databases Fall 2012 11

Example Schemas

  We will concentrate on Contracts, denoted as
CSJDPQV. The following FDs are given to hold:

 JP C, SD P, C is the primary key.
  What are the candidate keys for CSJDPQV?
  What normal form is this relation schema in?

Contracts (Cid, Sid, Jid, Did, Pid, Qty, Val)
Depts (Did, Budget, Report)
Suppliers (Sid, Address)
Parts (Pid, Cost)
Projects (Jid, Mgr)

Comp 521 – Files and Databases Fall 2012 12

Settling for 3NF vs BCNF

  CSJDPQV can be decomposed into SDP and CSJDQV,
and both relations are in BCNF. (recall SD P drives
this decomposition)
  Lossless decomposition, but not dependency-preserving.
  Adding CJP makes it dependency-preserving, at the cost of

redundancy.

  Suppose that this query is very important:
  Find the number of copies Q of part P ordered in contract C.
  Requires a join on the decomposed schema, but can be

answered by a scan of the original relation CSJDPQV.
  Could lead us to settle for the 3NF schema CSJDPQV.

Comp 521 – Files and Databases Fall 2012 13

Denormalization
  Suppose that the following query is important:

  Is the value of a contract less than the budget of the department?

  To speed up this query, we might add a field budget B
to Contracts.
  This introduces the FD: D B wrt Contracts.
  Thus, Contracts is no longer in 3NF.

  We might choose to modify Contracts thusly if the
query is sufficiently important, and we cannot obtain
adequate performance otherwise (i.e., by adding
indexes or by choosing an alternative 3NF schema.)

Comp 521 – Files and Databases Fall 2012 14

Choice of Decompositions
  There are 2 ways to decompose CSJDPQV into BCNF:

  SDP and CSJDQV; lossless-join but not dep-preserving.
  SDP, CSJDQV and CJP; dep-preserving as well.

  The difference between these is really the cost of
enforcing the FD: JP C.
  2nd decomposition: Index on JP on relation CJP.
  1st: CREATE ASSERTION CheckDep

CHECK (NOT EXISTS (SELECT *
FROM PartInfo P, ContractInfo C
WHERE P.sid=C.sid AND P.did=C.did
GROUP BY C.jid, P.pid
HAVING COUNT (C.cid) > 1))

Comp 521 – Files and Databases Fall 2012 15

Choice of Decompositions (Contd.)
  The following ICs were given to hold:

 JP C, SD P, C is the primary key.
  Suppose that, in addition, a given supplier always

charges the same price for a given part: SPQ V.
  If we decide that we want to decompose CSJDPQV

into BCNF, we now have a third choice:
  Begin by decomposing it into SPQV and CSJDPQ.
  Then, decompose CSJDPQ (not in 3NF) into SDP, CSJDQ.
  This gives us the lossless-join decomp: SPQV, SDP, CSJDQ.
  To preserve JP C, we can add CJP, as before.

  Choice: { SPQV, SDP, CSJDQ } or { SDP, CSJDQV }?

Comp 521 – Files and Databases Fall 2012 16

Decomposition of a BCNF Relation
  Suppose that we choose { SDP, CSJDQV }. This is in

BCNF, and there is no reason to decompose further
(assuming that all known ICs are FDs).

  However, suppose that these queries are important:
  Find the contracts with supplier S.
  Find the contracts made by department D.

  Decomposing CSJDQV further into CS, CD and CJQV
could speed up these queries. (Why?)

  On the other hand, the following query is slower:
  Find the total value of all contracts held by supplier S.

Comp 521 – Files and Databases Fall 2012 17

Horizontal Decompositions

  Our definition of decomposition: Relation is replaced
by a collection of relations that are projections. Most
important case.

  Sometimes, might want to replace relation by a
collection of relations that are selections.
  Each new relation has same schema as the original, but a

subset of the rows.
  Collectively, new relations contain all rows of the original.

Typically, the new relations are disjoint.

Comp 521 – Files and Databases Fall 2012 18

Horizontal Decompositions (Contd.)
  Suppose that contracts with value > 10000 are subject to

different rules. This means that queries on Contracts
will often contain the condition val > 10000.

  One way to deal with this is to build a clustered B+ tree
index on the val field of Contracts.

  A second approach is to replace contracts by two new
relations: LargeContracts and SmallContracts, with the
same attributes (CSJDPQV).
  Performs like index on such queries, but no index overhead.
  Can build clustered indexes on other attributes, in addition!

Comp 521 – Files and Databases Fall 2012 19

Masking Conceptual Schema Changes

  The replacement of Contracts by LargeContracts and
SmallContracts can be masked by the view.

  However, queries with the condition val>10000 must
be asked wrt LargeContracts for efficient execution:
so users concerned with performance have to be
aware of the change.

CREATE VIEW Contracts(cid, sid, jid, did, pid, qty, val)
 AS SELECT *
 FROM LargeContracts
 UNION
 SELECT *
 FROM SmallContracts

Comp 521 – Files and Databases Fall 2012 20

Tuning Queries and Views
  If a query runs slower than expected, check if an index

needs to be re-built, or if statistics are too old.
  Sometimes, the DBMS may not be executing the plan you

had in mind. Common areas of weakness:
  Selections involving null values.
  Selections involving arithmetic or string expressions.
  Selections involving OR conditions.
  Lack of evaluation features like index-only strategies or certain

join methods or poor size estimation.

  Check the plan that is being used! Then adjust the choice
of indexes or rewrite the query/view.

Comp 521 – Files and Databases Fall 2012 21

SQLite: Behind the Curtains
  Access to the DBMS’s query execution plan
$ sqlite3 origMovies.db
SQLite version 3.6.20
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> EXPLAIN QUERY PLAN SELECT COUNT(*)
 ...> FROM Customers C, Rentals R
 ...> WHERE R.cardNo=C.cardNo AND movieID=15922;
0|0|TABLE Customers AS C
1|1|TABLE Rentals AS R WITH INDEX sqlite_autoindex_Rentals_1
sqlite> EXPLAIN QUERY PLAN SELECT COUNT(*)
 ...> FROM Movies M, Rentals R
 ...> WHERE R.movieID=M.movieID and M.Title='The Graduate';
0|1|TABLE Rentals AS R
1|0|TABLE Movies AS M USING PRIMARY KEY

Comp 521 – Files and Databases Fall 2012 22

SQLite3: Use of Indices
  See the DBMS’s query execution plan

$ sqlite3 movies.db
:
index|cardNo_movieId|Rentals|544569|CREATE INDEX cardNo_movieId on Rentals(cardNo,movieId)
index|Cust_cardNo|Customers|697242|CREATE INDEX Cust_cardNo on Customers(cardNo)
index|Mov_Id|Movies|703747|CREATE INDEX Mov_Id on Movies(movieId)
index|Inx_movieID|Rentals|703948|CREATE INDEX Inx_movieID on Rentals(movieId)
:
sqlite> EXPLAIN QUERY PLAN SELECT COUNT(*)
 ...> FROM Rentals R, Customers C
 ...> WHERE R.cardNo=C.cardNo AND movieID=15922;
0|0|TABLE Rentals AS R WITH INDEX Inx_movieID
1|1|TABLE Customers AS C USING PRIMARY KEY
sqlite> EXPLAIN QUERY PLAN SELECT COUNT(*)
 ...> FROM Movies M, Rentals R
 ...> WHERE R.movieID=M.movieID and M.Title='The Graduate';
0|0|TABLE Movies AS M
1|1|TABLE Rentals AS R WITH INDEX Inx_movieID

Comp 521 – Files and Databases Fall 2012 24

Summary on Unnesting Queries
  DISTINCT at top level: Can ignore duplicates.

  Can sometimes infer DISTINCT at top level! (e.g.
subquery clause matches at most one tuple)

  DISTINCT in subquery w/o DISTINCT at top:
Hard to convert.

  Subqueries inside OR: Hard to convert.
  ALL subqueries: Hard to convert.

  EXISTS and ANY are just like IN.

  Aggregates in subqueries: Tricky.
  Good news: Some systems now rewrite under

the covers (e.g. DB2).

Comp 521 – Files and Databases Fall 2012 25

More Guidelines for Query Tuning
  Minimize the use of DISTINCT: don’t need it if

duplicates are acceptable, or if answer contains a key.
  Minimize the use of GROUP BY and HAVING:

SELECT MIN (E.age)
FROM Employee E
GROUP BY E.dno
HAVING E.dno=102

SELECT MIN (E.age)
FROM Employee E
WHERE E.dno=102

  Consider DBMS use of index when writing arithmetic
 expressions: E.age=2*D.age will benefit from index on
 E.age, but might not benefit from index on D.age!

Comp 521 – Files and Databases Fall 2012 26

Guidelines for Query Tuning (Contd.)

  Avoid using intermediate
relations:

SELECT * INTO Temp
FROM Emp E, Dept D
WHERE E.dno=D.dno
 AND D.mgrname=‘Joe’

SELECT T.dno, AVG(T.sal)
FROM Temp T
GROUP BY T.dno

vs.

SELECT E.dno, AVG(E.sal)
FROM Emp E, Dept D
WHERE E.dno=D.dno
 AND D.mgrname=‘Joe’
GROUP BY E.dno

and

  Does not materialize the intermediate reln Temp.
  If there is a dense B+ tree index on <dno, sal>, an index

-only plan can be used to avoid retrieving Emp tuples
 in the second query!

Comp 521 – Files and Databases Fall 2012 27

Summary

  Database design consists of several tasks:
requirements analysis, conceptual design, schema
refinement, physical design, and tuning.
  In general, have to go back and forth between these

tasks to refine a database design, and decisions in one
task can influence the choices in another task.

  Understanding the nature of the workload for the
application, and the performance goals, is
essential to developing a good design.
  What are the important queries and updates? What

attributes/relations are involved?

Comp 521 – Files and Databases Fall 2012 28

Summary
  The conceptual schema should be refined by

considering performance criteria and workload:
  May choose 3NF or lower normal form over BCNF.
  May choose among alternative decompositions into

BCNF (or 3NF) based upon the workload.
  May denormalize, or undo some decompositions.
  May decompose a BCNF relation further!
  May choose a horizontal decomposition of a relation.
  Importance of dependency-preservation based upon the

dependency to be preserved, and the cost of the IC check.
• Can add a relation to ensure dep-preservation (for 3NF, not

BCNF!); or else, can check dependency using a join.

Comp 521 – Files and Databases Fall 2012 29

Summary (Contd.)
  Over time, indexes have to be fine-tuned (dropped,

created, re-built, ...) for performance.
  Should determine the plan used by the system, and

adjust the choice of indexes appropriately.

  System may still not find a good plan:
  Only left-deep plans considered!
  Null values, arithmetic conditions, string expressions, the

use of ORs, etc. can confuse an optimizer.
  So, may have to rewrite the query/view:

  Avoid nested queries, temporary relations, complex
conditions, and operations like DISTINCT and
GROUP BY.

