SQL: Queries,
Constraints, Triggers
Part 1

Chapter 5.1-5.4

Comp 521 - Files and Databases Spring 2012

"

M

Structured Query Language (SQL) %

< Introduced in 1974 by IBM

% “De facto” standard db query language
« Caveats

= Standard has evolved (major revisions in 1992 and
1999)

= Semantics and Syntax may vary slightly among
DBMS implementations

Comp 521 - Files and Databases Spring 2012 2

“Baby” Example Instances

<+ We will start with these
instances of the Sailors
and Reserves relations
in our examples.

<+ If the key for the
Reserves relation

contained only the
attributes sid and bid,

how would the
semantics differ?

Comp 521 - Files and Databases

LTy
3 ’

Sailors:
sid |sname |rating |age
22 |dustin 7 45.0
31 |lubber | 8 55.5
58 |rusty 10 135.0
Reserves:
sid |bid day
22 101 |[10/10/96
58 103 [11/12/96

Spring 2012

Basic SQL Query

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification

target-list A list of attributes of relations in relation-list

relation-list A list of relation names (possibly with a range-

variable after each name).

qualification Comparisons (Attr op const or Attrl op Attr2,
where op is one of < >,= <2 #) combined using AND, OR
and NOT.

+ DISTINCT is an optional keyword indicating that the answer

should not contain duplicates. Default is that duplicates
are not eliminated!

Comp 521 - Files and Databases Spring 2012

000

"g b

e

Conceptual Evaluation Strateqy

% Semantics of an SQL query defined in terms of the
tollowing conceptual evaluation strategy:
- Compute the cross-product of the relation-list.
= Select (0) tuples if they satisty qualifications.
= Project () attributes that in the target-list.
= If DISTINCT is specified, eliminate duplicate rows.

<+ This strategy is probably the least efficient way to
compute a query! An optimizer will find more
efficient strategies to compute the same answers

Comp 521 - Files and Databases Spring 2012 5

G s

Example of Conceptual Evaluation’’ i

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

| S—

(sid) |sname |rating |age |(sid) |bid |day
22 |dustin 7 450 | 22 |101 |10/10/96
22 |dustin 7 45.0 | 58 (103 |11/12/96
31 |lubber 8 55.5 | 22 (101 |10/10/96
31 |lubber 8 55.5 | 58 103 |11/12/96
58 |rusty 10 |35.0 | 22 |101 |10/10/96
58 |rusty 10 [35.0 | 58 |103 |11/12/96

Comp 521 - Files and Databases Spring 2012 6

..o Q

Ay A
A Note on Range Variables i W

+ Really needed only if the same relation
appears twice in the FROM clause. The
previous query can also be written as:

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND bid=103

OR

It is good style,
howeuver, to use

range variables
SELECT sname always!

FROM Sailors, Reserves
WHERE Sailors.sid=Reserves.sid
AND bid=103

Comp 521 - Files and Databases Spring 2012 7

\§ r 8,
! X

. . i)
Find sailors who’ve reserved at least one boa

W

i1

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

< Would adding DISTINCT to this query make a
difference?

< What is the effect of replacing S.sid by S.sname in

the SELECT clause? Would adding DISTINCT to
this variant of the query make a difference?

Comp 521 - Files and Databases Spring 2012 8

..!00

G T

Expressions and Strings

| —

SELECT S.age, S.age-5 AS agel, 2*5.age AS age2
FROM Sailors S
WHERE S.sname LIKE “_us%’

<+ Illustrates use of arithmetic expressions and string pattern
matching: Find triples (of ages of sailors and two fields defined by
expressions) for sailors whose names begin and end with B and
contain at least three characters.

» ASrenames fields (p) in result. (Some SQL implementations
allow the use of ‘newalias=expr’ as well)

£ 77

+ LIKE is used for string matching. “_" stands for any one
character and “%"” stands for O or more arbitrary characters.

Comp 521 - Files and Databases Spring 2012 9

'g 0

More Examples

+ “Infant” Sailors/Reserves/Boats instance

Sailors: Reserves: Boats:

sid sname rating | age sid | bid day bid | bname color
22 Dustin 7 45.0 22 101 10/10/98 101 | Interlake blue
29 Brutus 1 33.0 22 102 10/10/98 102 | Interlake red
31 Lubber 8 55.5 22 103 10/8/98 103 | Clipper green
32 Andy 8 25.5 22 104 10/7/98 104 | Marine red
58 Rusty 10 35.0 31 102 11/10/98
64 | Horatio 7 35.0 31 103 11/6/98

71 Zorba 10 16.0 31 104 11/12/98

74 | Horatio 9 35.0 64 101 9/5/98
85 Art 3 25.5 64 102 9/8/98
95 Bob 3 63.5 74 103 9/8/98

Comp 521 - Files and Databases

Spring 2012

10

...o Q
000.'

red or a green boat

< Two approaches

» If we replace OR by AND in
the first version, what do we
get?

» UNION: Can be used to
compute the union of any
two union-compatible sets of
tuples (which are
themselves the result of
SQL queries).

» Also available: EXCEPT
(What do we get if we
replace UNION by
EXCEPT?)

>

Comp 521 - Files and Databases

? Find sid’s of sailors whove reserved a

SELECT DISTINCT S.sid

FROM Sailors S, Boats B, Reserves R

WHERE S.sid=R.sid AND R.bid=B.bid
AND (B.color="red” OR B.color="green”)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color="red”
UNION

SELECT S.sid

FROM Sailors S, Boats B, Reserves R

WHERE S.sid=R.sid AND R.bid=B.bid
AND B.color="green”

Spring 2012 11

...o Q

} Find sid’s of sailors who ve reserved a }"p W

red and a green boat

SELECT DISTINCT S.sid
> Solution 1: Multiple instancing FROM Sailors S, Boats B1, Reserves R1,
of the same relation in the Boats B2, Reserves R2
relation-list using another WHERE S.sid=R1.sid AND R1.bid=B1.bid
variable AND S.sid=R2.sid AND R2.bid=B2.bid
. Solution 2: INTERSECT: AND (B1.color="red” AND B2.color="green”)
Can be used to compute the
intersection of any two SELECT S.sid
union-compatible sets of FROM Sailors S, Boats B, Reserves R
tuples. WHERE S.sid=R.sid AND R.bid=B.bid
% Contrast symmetry of the AND B.color="red”
UNION and INTERSECT e
queries with the first SELECT S.sid
version. FROM GSailors S, Boats B, Reserves R

WHERE S.sid=R.sid AND R.bid=B.bid
AND B.color="green”

Comp 521 - Files and Databases Spring 2012 12

.000

(; Nested Queries ?»73@7

i (
. . , T
Find names of sailors whove never reserved boat #103:
SELECT S.sid, S.sname
FROM Sailors S

WHERE S.sid NOT IN (SELECT DISTINCT R.sid
FROM Reserves R
WHERE R.bid=103)

% A very powerful feature of SQL: a WHERE clause can

itself contain an SQL query! (Actually, so can FROM
and HAVING clauses.)

< To find sailors who've reserved #103, use IN.

+ To understand semantics of nested queries, think of a
nested loops evaluation: For each Sailors tuple, check the
qualification by computing the subquery.

Comp 521 - Files and Databases Spring 2012 13

...o Q
°°“

) Nested Queries with Correlation vw

Find names of sailors whove reserved any boat:

Correlation is when inner SELECTs

SELECT S.sname __ reference relation variables of
FROM Sailors S - outer SELECTs
WHERE EXISTS SELECT

FROM Reserves R

WHERE S.sid=R.sid)

» EXISTS is another set comparison operator, like IN.

<+ [llustrates why, in general, a subquery must be re-
evaluated for each Sailors tuple.

Comp 521 - Files and Databases Spring 2012 14

U

More on Set-Comparison Operators

+ We've already seen IN, EXISTS and UNIQUE. Can also
use NOT IN, NOT EXISTS and NOT UNIQUE.

% Also available: op ANY, op ALL, op IN >,<,=,2,<,#

< Find sailors whose rating is greater than that of some
sailor called Horatio:

SELECT *
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating
FROM Sailors S2
WHERE S2.sname="Horatio’)

Comp 521 - Files and Databases Spring 2012 15

Y Iy
Rewriting INTERSECT Queries Using IN*

Find sid’s of sailors whove reserved both a red and a green boat:

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color="red’
AND S.sid IN (SELECT S2.sid
FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid=R2.sid AND R2.bid=B2.bid
AND B2.color="green’)

<+ Similarly, EXCEPT queries re-written using NOT IN.

<+ To tind names (not sid’s) of Sailors who've reserved
both red and green boats, just replace S.sid by S.sname
in SELECT clause. (What about INTERSECT query?)

Comp 521 - Files and Databases Spring 2012 16

! Division in S QL

Find sailors who've reserved all boats.

B . 1) | SELECT S.sname
+ The hard way, without (1) oM Sl
EXCEPT: WHERE NOT EXISTS
(SELECT B.bid |4z
(2) SELECT S.sname FROM Boats B | boats
FROM Sailors S . EXCEPT
WHERE NOT EXISTS S o |PELECT R.bid
(SELECT B.bid by a given FROM Reserves R
' Suilor |WHERE R.sid=S.sid)
FROM Boats B

WHERE NOT EXISTS (SELECT R.bid

FROM Reserves R

Sailors S such that ... WHERE R.bid=B.bid
there is no boat B without ... AND R.sid=S.sid))

a Reserves tuple showing S reserved B

Comp 521 - Files and Databases Spring 2012 17

§ r %
Next Time i W

+ We've covered the portion of SQL that has
the same power as relation algebra

+ Next time we will consider some important
extensions, that cannot be expressed in
relational algebra, but are nonetheless useful

tools for and a natural additions to query
specification

Comp 521 - Files and Databases Spring 2012 18

