Question 1.

For each of the following relations, tell which normal form it is (none, 1NF, 2NF, 3NF, or BCNF) and why. If it is less than 3NF, give an equivalent 3NF schema

A) Rentals [SailorId, SailorName, BoatId, Date]

[SailorId, BoatId, Date] is the primary key. SailorId → SailorName.

1NF, because SailorId is part of a key, but not the full key.

equivalent 3NF schema:

Rentals [SailorId, BoatId, Date]; Sailors [SailorId, SailorName]

B) ShimpmentUpdates [TrackingNumber, Datetime, FacilityId, Status, ResponsibleEmployee]

[TrackingNumber, Datetime] is the primary key.

[TrackingNumber, Datetime, FacilityId] → ResponsibleEmployee

this is BCNF. [TrackingNumber, Datetime, FacilityId] is a superkey.

C) Customers [Id, Name, Address, PhoneNumber]

PhoneNumbers is a comma-delimited list. Id and name are keys. There are no other FDs.

This violates the "spirit" of 1NF. A 3NF schema would be [Id, Name, Address]; [Id, phonenumber]

However, you could make a case for BCNF.

D) TeachingSchedule [Dept, CourseNo, SemesterId, ProfessorId]

[Dept, CourseNo, SemesterId] is the primary key. ProfessorId → Dept.

The FD violates BCNF, becuase ProfessorId is not a key. However, Dept is part of a key, so this is 3NF.

E) Genotype [MouseId, Chromosome, Position, Value, BaseType]

The primary key is [MouseId, Chromosome, Position]. Value → BaseType.

This is 2NF. Value --> BaseType violates 3NF because value is not a key and BaseType is not part of a key.

3NF equivalent: [MouseId, Chromosome, Position, Value]; [Value, BaseType]

Question 2.

A) Show that FL is a key for Alumni

reflexivity: FL -> FL

union with D5: FL -> FLYAS

transitivity of the above and D3: FL --> H

union: FL -> FLYASH

transitivity of the above and D4: FL --> Z L

union: FL -> FLYASHZ

transitivity of the above with D1: FL -> M

union: FL -> FLYASHZM

since FL -> the whole table, FL is a superkey. Further, neither F nor L is key by itself, so FL is a key.

B) Find a minimal cover for these functional dependencies.

FL->M

FL->H

FL->A

FL->Y

H->Z

H->L

Z->S

D) Find a lossless-join BCNF decomposition.

start with F L Y A S Z H M.

D2 and D4 cause violations. Split to deal with D2:

FLYAZHM, ZS

Split to deal with D4: FYAHM, ZS, HZL

Note that since H -> L, FH -> FL (augmentation), so FH is a key for the entire table and first decomposed table (transitivity)

C) Using the result from part A, find a 3NF lossless-join dependency-preserving decomposition

The decomposition from D preserves D2, D3, and D4. We can make it dependency preserving by adding FLZM and FLS

Question 3.

A) Suppliers would be unclustered and unindexed (don't need it)

Parts would have a clustered index of either type on sid (helps with 3, don't need a seperate step to group it)

It would have an unclustered tree index on cost (helps with 2)

Add an unclustered hash index on pname to speed Q1 up.

B) an index on (sid, cost, num_avail), preferably tree to make grouping easier.

C) SELECT\pname=?/(Part) using index. Feed that into an on-the-fly projection, pipeline that into an on-the-fly sum..
Question 4.

A) serializable

B) not serializable. Strict 2PL:

1 obtains a shared lock on x

2 obtains an exclusive lock on y

1 obtains a shared lock on z

3 obtains a shared lock on z

2 tries to obtain an exclusive lock on x. 2 is blocked on 1.

1 tries to obtain a shared lock on y. 1 is blocked on 2. Deadlock.

C) serializable

D) "

E) "

Question 5.

assumption: for all fds, head and tail are disjoint. relatively easy to extend to handle the case where they are not.

def decompose(r, fds):

 r = set(r)

 fds = [[set(x) for x in fd] for fd in fds]

 for (x, y) in fds:

 if violation(r, (x, y), fds):

 # violation, decompose into r-y and xy, then recur.

 r1 = r - y

 r2 = x | (y & r) # ie: given ABCD and B -> DE, decompose to ABC and BD, not ABC and BDE.

 return decompose(r1, fds) + decompose(r2, fds)

 # if we get here, table doesn't violate any FDs, so no need to decompose.

 return [''.join(r)]

assumption: no trivial FDs

def violation(table, (x, y), fds):

 c = closure(x, fds)

 is_key = c >= table

 # only consider this FD if the table actually contains the full LHS and something on the RHS

 return x.issubset(table) and (table & y) and not is_key

def closure(attrs, fds):

 closure = set(attrs)

 oldSize = 0

 while(oldSize != len(closure)):

 oldSize = len(closure)

 for (x, y) in fds:

 if x <= closure:

 closure.update(y)

 return closure

print decompose("ABCD", [("B", "DE")]) # testing a bug fix.

print

print decompose("CSJDPQV", [("SD", "P"), ("J", "S"), ("JP", "C")])

print

print decompose("ABCDEFGH", [("A", "B"), ("ACD", "E"), ("EF", "GH")])

print

print decompose("FLYASZHM", [("FLZ", "M"), ("Z", "S"), ("FLA", "H"), ("H", "ZL"), ("FL", "YAS")])

