© Original Artist

—_

lF!epn:)d uction‘rights,o\btginab
v CartoonStockicorm s

Crash Recovery

Chapter 18

Final Monday 12/13 @ 4pm, FB141
Study Session Sunday 12/12 @ 4:30pm, SN011

~50 questions multiple choice
Open book, notes, no computers

Comp 521 - Files and Databases Fall 2010 1

Review: The ACID properties

& Atomicity: All actions of a transaction happen, or
none happen.

& Consistency: If each Xact is consistent, and the DB starts
consistent, it ends up consistent.

& Isolation: Execution of one Xact is isolated from that
of other Xacts.

& Durability: If a Xact commiits, its effects persist.

+ The Recovery Manager guarantees Atomicity & Durability.

Comp 521 - Files and Databases Fall 2010 2

)¢

J

Motioation

< Atomicity:

= Transactions may abort
< Durability:

= What if DBMS Crashes?

(“Rollback”).

(“Worse case”, a few unfinished Xacts are lost)

< Desired Behavior after

system restarts: crash!

~T1,T2&T3should |2 ™ _—— I
be durable. 12 |
T3 I
- T4 & T5 should T4 :
be aborted T5 —

(no effect).

Comp 521 - Files and Databases Fall 2010

... Q

)¢

000.'

/

Assumptions

% Concurrency control is in effect.
= Strict 2PL, in particular.
+ Updates are happening “in place”.

" i.e. data is overwritten on (or deleted from)
non-volatile disk.

+ A simple scheme to guarantee
Atomicity & Durability?

Comp 521 - Files and Databases Fall 2010

G

Handling the Buffer Pool

<+ Force every write to disk? Stall DBMS
until completed

: No Steal Steal
= Poor response time.
= But provides durability. Force| Trivial
+ Steal buffer-pool frames
from uncommitted Xacts? T
(flush dirty frames, only No Force Desired
when a new frame is needed)]

= If not, poor throughput
(multiple writes to same page).

= If so, how can we ensure atomicity?

Comp 521 - Files and Databases Fall 2010 5

...o Q
000.'

More on Steal and Force

+ STEAL (why enforcing Atomicity is hard)

= What if a page, P, dirtied by some unfinished Xact
is written to disk to free up a buffer slot, and the
Xact later aborts?

* Must remember the old value of P at steal time (to
UNDO the page write).

+ NO FORCE (why enforcing Durability is hard)

= What if system crashes before a page dirtied by a
committed Xact is flushed to disk?

* Write as little as possible, in a convenient place, at
commit time, to support REDOing modifications.

Comp 521 - Files and Databases Fall 2010 6

..o Q

%
Basic Idea: Logging

+ Record sufficient information
to REDO and UNDO every change in a log.

= Write and Commit sequences saved to log (on a
separate disk or replicated on multiple disks).

* Minimal info (diff) written to log, so multiple
updates fit in a single log page.

% Log: An ordered list of REDO/UNDO actions
= Log record contains:

<XID, pagelD, offset, length, old data, new data>

= and additional control info (which we’ll see soon).

Comp 521 - Files and Databases Fall 2010

Write-Ahead Logging (WAL) @é@(

% The Write-Ahead Logging Protocol:

1. Modification of a database object must first be
recorded in the log, and the log updated, before
any change to the object

2. Must write all log records of a Xact before it
commits.

% #1 guarantees Atomicity.
% #2 guarantees Durability.

<+ Exactly how is logging (and recovery!) done?
= We'll study the ARIES algorithms.

Comp 521 - Files and Databases Fall 2010 8

VYWALE @ o |

the LOg LSNs pageLSNs flushedLSN

<+ BEach log record has a unique
Log Sequence Number (LSN). Log pages

on disk
= LSNs are always increasing.

< Bach data page contains a pageLSN.
= LSN of most recent page modification.

% System keeps track of flushed LSN.

= Max LSN flushed from the
page buffer so far.

q

pageLSN 7141 oo tail”
in RAM
« WAL: Before a page is written,

= pageLSN = flushedLSN >

Comp 521 - Files and Databases Fall 2010

G

Log Records -

Possible log record types:

LogRecord fields: +» Update
prevLSN < Commit
XID
t <+ Abort
ype
~ pagelD < End (signifies end of
update | length commit or abort)
records 7 Offset - + Compensation Log
iy before-image Records (CLRs)
_ after-image

= for UNDO actions

Comp 521 - Files and Databases Fall 2010 10

)¢

J

Other Log-Related State

<+ Transaction Table:
= One entry per active Xact.

= Contains XID, status (running/commited /aborted),
and lastLSN due to Xact

% Dirty Page Table:
= One entry per dirty page in buffer pool

= Contains recLSN -- the LSN of the log record which
first dirtied the page

Comp 521 - Files and Databases Fall 2010 11

‘ s,

Log and Table Entries

pagelD recLSN

500 .
600 -
\\\ prevLSN XID type pagelD length offset before after
S \ 2 T1000 update | 500 1 2 B z
Dirty Page Table B T2000 update | 600 3 1 DEF GHI
1 T2000 update 500 2 1 AZ MN
T1000 update 505 1 3 Q R
7 P
bl (13 112
transID status lastLSN Log s “Tail
T1000 running //
T2000 running /

Transaction Table

Comp 521 - Files and Databases Fall 2010 12

)¢

J

Normal Execution of an Xact

<+ Series of reads & writes, terminated by commit
or abort.
= We will assume that write is atomic on disk.

* In practice, additional details to deal with non-atomic writes.

< Strict 2PL.

+ STEAL, NO-FORCE buffer management, with
Write-Ahead Logging.

Comp 521 - Files and Databases Fall 2010 13

...o Q
000.'

Checkpointing

+ Periodically, the DBMS creates a checkpoint, to
minimize recovery time in the event of a system
crash. What is written to log and disk:

= begin_checkpoint record: Indicates when chkpt began.

= end_checkpoint record: Contains current Xact table and
dirty page table. This is a “fuzzy checkpoint”:

* Xacts continue to run; so these tables are accurate only as of the
time of the begin_checkpoint record.

* No attempt to force dirty pages to disk; effectiveness of
checkpoint limited by oldest unwritten change to a dirty page.
(So it’s a good idea to periodically flush dirty pages to disk!)

= Store LSN of chkpt record in a safe place (master record).

Comp 521 - Files and Databases Fall 2010 14

000
000,

The Big Picture:
What's Stored VWhere

)

prevLSN

XID

type

pagelD
length

offset
before-image
after-image

Comp 521 - Files and Databases

r

S~—
Data pages

each
with a
pagelLSN

master record

Fall 2010

IR IIRNDIINIIN

RAM

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

15

G

Simple Transaction Abort

<+ For now, consider an explicit abort of a Xact.
= No crash involved.

< We want to “play back” the log in reverse
order, UNDOing updates.
= Get lastLSN of Xact from Xact table.

= Can follow chain of log records backward via the
prevLSN field.

= Before starting UNDO, write an Abort log record.

* For recovering from crash during UNDO!

Comp 521 - Files and Databases Fall 2010 16

..00

G

O &
o &
Abort, cont. o A

NI N
@Q %é %’(o Q®+
< ¥

% To perform UNDO, must have a loc(on data!

<+ Before restoring old value of a page, write a
Compensation Log Record (CLR):

= Continue logging while you UNDO!!

= CLR has one extra field: undonext].SN
e Points to the next LSN to undo

= CLRs are never Undone (but they might be Redone
when repeating history: guarantees Atomicity!)

+ At end of UNDO, write an “end” log record.

Comp 521 - Files and Databases Fall 2010 17

Transaction Commit

< Write commit record to log.

+ All log records up to Xact’s lastLSN are
flushed on a commit.

= Guarantees that flushedLSN = last.SN.

= Note that log flushes are sequential, synchronous
writes to disk.

= Many log records per log page.
< Commit() returns.
% Write end record to log.

Comp 521 - Files and Databases Fall 2010 18

)¢

/

Crash Recovery: Big Picture

Oldest log rec.
of Xact active
at crash

Smallest
recLSN in

dirty page
table after
Analysis

Last chkpt - l
CRASH —

ARU

Comp 521 - Files and Databases

+ Start from a checkpoint (found
via master record).

% ARIES 3 phases. Need to:

- Analysis: Figure out which Xacts
committed since last checkpoint,
and which did not finish.

- REDO all logged actions.
¢ repeat “writing” history
- UNDO effects of unfinished
“loser” Xacts.

Fall 2010 19

%
Recovery: The Analysis Phase

< Reconstruct state at checkpoint.
= via the end_checkpoint record.

% Scan log forward from checkpoint.

= End record: Remove Xact from Xact table because
it safely completed.

= Other records: Add Xact to Xact table, set
lastLSN=LSN, change Xact status on commit.

= Update record: If P not in Dirty Page Table,
e Add P to D.P.T., set its recLSIN=LSN.

Comp 521 - Files and Databases Fall 2010 20

G

Recovery: The REDO Phase

+ We repeat History to reconstruct state at crash:
= Reapply all updates (even of aborted Xacts!), redo CLRs.
<+ Scan forward from log rec containing smallest

recLSN in D.P.T. For each CLR or update log rec
SN, REDO the action unless:

= Affected page is not in the Dirty Page Table, or
= Affected page is in D.P.T., but has recLSN > LSN, or
= pageLSN (in DB) = LSN.
% To REDO an action:
= Reapply logged changes (restore to before state).
= Set pageLLSN to LSN. No additional logging!

Comp 521 - Files and Databases Fall 2010 21

G

Recovery: The UNDO Phase

ToUndo={1[| [alastLSN of a “loser” Xact}

Repeat:

= Choose largest LSN among ToUndo.
= Jf this LSN is a CLR and undonextLSN==NULL

* Write an End record for this Xact.
= [f this LSN is a CLR, and undonextLSN = NULL
e Add undonextLSN to ToUndo

= Else this LSN is an update. UNDO the update,
write a CLR, add prevLSN to ToUndo.

Until ToUndo is empty.

Comp 521 - Files and Databases Fall 2010 22

Example of Recovery
Lozl rr]lrrllrr] s LSN = LOG
RAM 00 -- begin_checkpoint
05 == end_checkpoint
Xact Table 10 =i update: T1 writes P5x . prevLSNs
lastLSN 20 —g— update T2 writes P3 A . "
status 30 == T1 abort <. —— & 7
Dirty Page Table pollaborts T Ty
recLSN 40 = CLR: Undo TlLSN 10 |,
flushedLSN 45 = T1 End g
50 =+ update: T3 writes P1
ToUndo 60 ~i update: T2 writes P5

X CRASH, RESTART

Comp 521 - Files and Databases Fall 2010 23

...o Q
000.'

|]

[z220 szl 12211 22] 2

RAM

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

ToUndo

Comp 521 - Files and Databases

Example: Crash During Restart!

LSN _ LOG
00,05 —'— begin_checkpoint, end_checkpoint

10 — update: T1 writes P5
20 — update T2 writes 3
30 — T1 abort
40,45 = CLR: Undo T1 LSN 10, T1 End
50 —'— update: T3 writes P1
60 — update: T2 writes P5
X CRASH, RESTART
70 — CLR: Undo T2 LSN 60
80,85 = CLR: Undo T3 LSN 50, T3 end
X CRASH, RESTART

90 = CLR: Undo T2 LSN 20, T2 end
Fall 2010 24

undonegtLSN

*
.0
»

... Q

)¢

000.'

J
Additional Crash Issues

< What happens if system crashes during
Analysis? During REDO?
< How to limit the amount of work in REDO?

= Flush dirty pages asynchronously in the
background.

II!

= Watch out for “hot spots
< How to limit the amount of work in UNDO?

= Avoid long-running Xacts.

Comp 521 - Files and Databases Fall 2010 25

%y

Summary of Logging/Recovery

% Recovery Manager guarantees Atomicity &
Durability.

+ Uses WAL to allow STEAL/NO-FORCEw/o0
sacrificing correctness.

+ LSNs identity log records; linked into
backwards chains per transaction (via
prevLSN).

+ pageLSN allows comparison of data page and
log records.

Comp 521 - Files and Databases Fall 2010 26

Summary, Cont.

% Checkpointing: A quick way to limit the
amount of log to scan on recovery.
+ Recovery works in 3 phases:

= Analysis: Forward from checkpoint.
= Redo: Forward from oldest recLLSN.

= Undo: Backward from end to first LSN of oldest
Xact alive at crash.

< Upon Undo, write CLRs.
+ Redo “repeats history”: Simplifies the logic!

Comp 521 - Files and Databases Fall 2010 27

