
Comp 521 – Files and Databases Fall 2010 1

Overview of
Transaction Management

Chapter 16

Comp 521 – Files and Databases Fall 2010 2

Database Transactions
  A transaction is the DBMS’s abstract view of a user

program: a sequence of database commands; disk
reads and writes.

  Concurrent execution of user programs is essential for
good DBMS performance.
  Because disk accesses are frequent, and relatively slow, it is

important to keep the cpu busy by working on several user
programs concurrently.

  A user’s program may carry out many consecutive
operations on the data retrieved from the database, but
the DBMS is only concerned about what data is read/
written from/to the database.

Comp 521 – Files and Databases Fall 2010 3

ACID Properties of Transactions
  Atomic: the end effect of a transaction should be all or

nothing. Either it is executed to completion, or it is as
if it never happened. (DBMS provides this)

  Consistency: Every transaction must preserve all
constraints of the database. (User and DBMS)

  Isolation: The result of a transaction should give
predictable results regardless of any concurrent
transactions. (DBMS)

  Durability: Transactions must tolerate crashes and
being aborted before completion allowing the
database to be recoverable to a consistent state.
(DBMS)

Comp 521 – Files and Databases Fall 2010 4

Concurrency in a DBMS
  Users submit a transaction, and can think of it as

executing by itself on the database.
  Concurrency is provided by the DBMS, which interleaves

the actions (reads/writes) of many transactions.
  Each transaction must leave the database in a consistent

state if the DB was consistent when the transaction began.
  DBMSs only enforce Integrity Constraints
  Beyond this, the DBMS does not understand the data.

(e.g., it does not understand how interest on a bank account
is computed).

  Issues: Effect of interleaving transactions and crashes.

Comp 521 – Files and Databases Fall 2010 5

Interleaving’s Impact
  Interleaving improves database performance

  While one transaction waits for pages to be read from
disk, the CPU processes other transactions. I/Os
proceed in parallel with CPU activity
(greater system utilization)

  Increased system throughput (transactions/sec)
  More “fair” than true sequential access; allows all

pending transactions to make progress (heavy
transactions, don’t starve out light ones)

  Predictable latency (delay from request to completion)

  However, interleaving can lead to anomalies
  Sequential inconsistency

Comp 521 – Files and Databases Fall 2010 6

Example

  Consider two transactions (Xacts):
T1: BEGIN C=C+100, S=S-100 END
T2: BEGIN C=1.02*C, S=1.04*S END

  Intuitively, the first transaction is transferring $100
from a savings to a checking account. The second is
crediting both accounts interest payments.

  There is no guarantee that T1 will execute before T2 or
vice-versa, if both are submitted together. However,
the net effect must be equivalent to some execution of
these two transactions run sequentially.

Comp 521 – Files and Databases Fall 2010 7

Example (Contd.)

  Consider a possible interleaving (schedule):
T1: C=C+100, S=S-100
T2: C=1.02*C, S=1.04*S

  This is OK. But what about:
T1: C=C+100, S=S-100
T2: C=1.02*C, S=1.04*S

  The DBMS’s view of the second schedule:
T1: R1(C), W1(C), R1(S), W1(S)
T2: R2(C), W2(C), R2(S), W2(S),

Same
result as
T1
followed
by T2

Inconsistent
with any
order of T1
and T2

Comp 521 – Files and Databases Fall 2010 8

Scheduling Transactions

  Serial schedule: Schedule that does not interleave the
actions of different transactions.

  Equivalent schedules: For any database state, the effect
(on the set of objects in the database) of executing the
first schedule is identical to the effect of executing the
second schedule.

  Serializable schedule: A schedule that is equivalent to
some serial execution of the transactions.

(Note: If each transaction preserves consistency, every
serializable schedule also preserves consistency.)

Comp 521 – Files and Databases Fall 2010 9

Atomicity of Transactions

  An important property guaranteed by the DBMS is
that transactions are atomic. That is, a user can think
of a Xact as either always executing all its actions in
one step, or not executing any actions at all.

  A transaction might commit after completing all its
actions, or it could abort (or be aborted by the DBMS)
after executing some actions.

  DBMS logs all actions so that it can undo aborted
transactions.

Comp 521 – Files and Databases Fall 2010 10

The 3 Classes of Anomalies
  Reading Uncommitted Data--

Write-Read (WR) Conflict, “dirty reads”:

  Unrepeatable Reads--
Read-Write (RW) Conflict:

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), R(B), W(B), C,

T1: R(A), W(A), R(B), W(B), C
T2: R(A), W(A), R(B), W(B), C,

T2’s write of A is lost

Comp 521 – Files and Databases Fall 2010 11

Anomalies (Continued)
  Overwriting Uncommitted Data

Write-Write (WW) Conflict, “blind write”:

  All 3 anomalies involve at least one write
  How do we avoid these?

T1: W(A), W(B), C
T2: W(A), W(B), C

T1’s write of A is lost

Comp 521 – Files and Databases Fall 2010 12

Lock-Based Concurrency Control
 Strict Two-phase Locking (Strict 2PL) Protocol:

  Each Xact must obtain a shared (S) lock on object
before reading, and an exclusive (X) lock on object
before writing. (of course, you can both read and
write an object with an X lock)

  All locks held by a transaction are released when
the transaction completes (at Commit or Abort)

  If an Xact holds an X lock on an object, no other
Xact can get either an S or X lock on that object.

 Strict 2PL allows only serializable schedules.
 Additionally, it simplifies aborts (more soon)

Comp 521 – Files and Databases Fall 2010 13

Examples
  Common case: Xacts affect different parts of

db. T1: B = f(B, A), T2: C = g(C, A)

  Hot spots: Xacts reference a common record.
T1: A = f(A), T2: B = f(B,A)

T1: S(A), R(A), X(B), R(B), W(B),C
T2: S(A), R(A), X(C), R(C), W(C), C

T1: X(A), R(A), W(A), C
T2: S(A), … R(A), X(B), R(B), W(B), C

T1: X(A), … R(A), W(A), C
T2: S(A), R(A), X(B), R(B), W(B), C

Comp 521 – Files and Databases Fall 2010 14

Deadlocks
  Transactions request exclusive access to a common

locked record. T1: B = f(B, A), T2: A = g(A, B)

  A rare unfortunate ordering, where both
transactions wait, and make no progress

  Soln: DBMS monitors how long a transaction has
been waiting and aborts it, thus freeing its locks

T1: S(A),R(A),X(B),R(B), W(B),C
T2: S(B),… R(B),X(A),R(A),W(A),C

T1: S(A),R(A), X(B),…
T2: S(B),R(B), X(A), …

Abort
 X(A), R(A), W(A), C

Comp 521 – Files and Databases Fall 2010 15

Aborting a Transaction
  If a transaction Ti is aborted, all its actions have to be

undone. Not only that, if Tj reads an object last
written by Ti, Tj must be aborted as well!

  Releasing transaction locks only on commit/abort
avoids cascading aborts (abort handling is simplified)
  If Ti writes an object, Tj can read it only after Ti frees lock.

  In order to undo the actions of an aborted transaction,
the DBMS maintains a log in which every write is
recorded. This mechanism is also used to recover
from system crashes: all active Xacts at the time of the
crash are aborted when the system comes back up.

Comp 521 – Files and Databases Fall 2010 16

Transactions in SQL
  Transactions begin on any statement that references

a table (CREATE, UPDATE, SELECT, INSERT, etc.)
  Transactions end when either a “COMMIT” or

“ROLLBACK” (Abort) command is reached
  SQL provides a “SAVEPOINT name” to break up

transactions into intermediate pieces, which can be
gotten back to using

 “ROLLBACK TO SAVEPOINT name”
  Operations between 2 savepoints are handled as

separate Xactions, in terms of concurrency control

Comp 521 – Files and Databases Fall 2010 17

The Log
  The following actions are recorded in the log:

  Ti writes an object: the old value and the new value.
  Ti commits/aborts: a log record indicating this action.

  Log records are chained together by Xact id, so it’s
easy to undo a specific Xact.

  All log related activities (and in fact, all
concurrency-control related activities such as lock/
unlock, dealing with deadlocks etc.) are handled
transparently by the DBMS.

  Complication: committed writes might be held in
the buffer pool

Comp 521 – Files and Databases Fall 2010 18

Recovering From a Crash
  There are 3 phases in the Aries recovery algorithm:

  Analysis: Scan the log forward (from the most recent
checkpoint) to identify all Xacts that were in progress,
and all dirty pages in the buffer pool at crash time

  Redo: Redoes all updates to dirty pages in the buffer pool,
as needed, to ensure that all logged updates are in fact
carried out and written to disk.

  Undo: The writes of all Xacts that were in progress at crash
time are undone (by restoring the old value of the data,
which is in the log record for the update), working
backwards in the log. (Some care must be taken to handle
the case of a crash occurring during the recovery process!)

Comp 521 – Files and Databases Fall 2010 19

Summary
  Concurrency control and recovery are among the

most important functions provided by a DBMS.
  Users need not worry about concurrency.

  System automatically inserts lock/unlock requests and
schedules actions of different Xacts in such a way as to
ensure that the resulting execution is equivalent to
executing the Xacts one after the other in some order.

  Write-ahead logging (WAL) is used to undo the
actions of aborted transactions and to restore the
system to a consistent state after a crash.
  Consistent state: Only the effects of commited Xacts seen.

