
Comp 521 – Files and Databases Fall 2010 1

Evaluation of
Relational Operations

Chapter 14

Comp 521 – Files and Databases Fall 2010 2

Relational Operations

  We will consider in more detail how to implement:
  Selection () Selects a subset of rows from relation.
  Projection () Deletes unwanted columns from relation.
  Join () Allows us to combine two relations.
  Set-difference () Tuples in left but not right relation.
  Union () Tuples in reln. 1 and in reln. 2.
  Aggregation (SUM, MIN, etc.) and GROUP BY

  Since each op returns a relation, ops can be composed!
After we cover the operations, we will discuss how to
optimize queries formed by composing them.

Comp 521 – Files and Databases Fall 2010 3

Running Database Example

  Schema

  ~100, 000 Reserves:
  Each tuple is 40 bytes, 100 tuples per page, 1000 pages.

  ~40,000 Sailors:
  Each tuple is 50 bytes, 80 tuples per page, 500 pages.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Comp 521 – Files and Databases Fall 2010 4

Selection (from Chapter 12)
(Note: we ignore “output costs”)
  No Index, Unsorted Data

  Scan the entire relation,
for Reserves 1000 I/Os

  No Index, Sorted Data
  Binary search, for Reserves log21000 ~ 10 I/Os

  B+-Tree Index, Clustered on selection attribute
  Use index to find smallest tuple satisfying selection, scan

forward from there, for
Reserves 3 I/Os to find starting point + K Blocks
containing ‘Joe’ (K ~ 1-2 if op is ‘=‘ << 1000)

  B+-Tree Index, Unclustered
  Discussion follows

SELECT *
FROM Reserves R
WHERE R.rname=‘Joe’

Comp 521 – Files and Databases Fall 2010 5

Using an Index for Selections
  Cost depends on #qualifying tuples, and clustering.

  Cost of finding qualifying data entries is typically small, but the cost of
retrieving records could be large w/o clustering.

  Example, assuming uniform distribution of ratings (1-10), about 10% of
tuples qualify (100 pages, 10000 tuples). With a clustered index, cost is
little more than 100 I/Os; if unclustered, upto 10000 I/Os!

  Important refinement for unclustered indexes:
1. Find qualifying data entries in index.
2. Find distinct rids of the pages to be retrieved. (2 ways)

 A. Sort by rid while removing replicates
B. Build Hash of rids while eliminating replicates

3. Scan surviving rids while applying selection (result set will be unordered).

  Ensures each page is considered just once (though # of
pages is still likely higher than with clustering).

Comp 521 – Files and Databases Fall 2010 6

General Selections
  Selections typically involve more than one attribute

with logical conjuncts (and, or)
  Recall we transform to CNF (product-of-sum) form
  Can be sorted or clustered by only one attribute
  Only a subset of attributes might have indices
  What order to process selection terms?
  How selective is a selection term?

  rname = “Joe” < 4% of Sailors
  age < 20 ~ 10% of Sailors
  Rating > 7 ~ 30 % Sailors

  Conjunctions vs disjunctions

Comp 521 – Files and Databases Fall 2010 7

Two Approaches to General Selections
  First approach: Find the most selective access path,

retrieve tuples using it, and apply any remaining
selection terms during scan:
  Most selective access path: An index or file scan that we

estimate will require the fewest page I/Os.
  Terms that match this index reduce the number of tuples

retrieved; other terms are used further discard retrieved
tuples, but do not affect number of pages fetched.

  Consider day<8/9/94 AND bid=5 AND sid=3. A B+ tree
index on day can be used; then, bid=5 and sid=3 must be
checked for each retrieved tuple. Similarly, a hash index
on <bid, sid> could be used; day<8/9/94 must then be
checked.

Comp 521 – Files and Databases Fall 2010 8

Set Operation on Rids
  Second approach (if we have 2 or more matching

indexes):
  Get sets of rids of data records using each matching index.
  Intersect and/or union these sets of rids

(we’ll see how shortly)
  Retrieve the records and apply any remaining terms.
  Consider day<8/9/94 AND bid=5 AND sid=3. If we have a B+

tree index on day and an index on sid, both unclustered, we
can retrieve distinct rids satisfying day<8/9/94 using the
first, rids of recs satisfying sid=3 using the second, intersect
the rid sets, then retrieve records and check bid=5.

Comp 521 – Files and Databases Fall 2010 9

The Projection Operation
  Modified external sorting:

  Modify Pass 0 of external sort to
eliminate repeated fields. Thus,
extending the run-size produced. Tuples in later runs are
smaller than input tuples. (Size ratio depends on # and size
of fields that are dropped.)

  Modify merging passes to eliminate duplicates. Thus,
number of result tuples smaller than input. (Difference
depends on # of duplicates.)

  Cost: In Pass 0, read original pages, but write out fewer
pages (same number of smaller tuples). In merge passes,
fewer tuples are written out due to duplicates.

SELECT DISTINCT
 R.sid, R.bid
FROM Reserves R

Comp 521 – Files and Databases Fall 2010 10

Projection Based on Hashing
  Modified hashing:

  Partitioning phase: Read R using one input buffer. For each
tuple, discard unwanted fields, apply hash function h1 to
direct output to one of B-1 output buffers.

•  Result is B-1 partitions (of tuples with no unwanted fields). Tuples
from different partitions are guaranteed to be distinct.

  Duplicate elimination phase: Foreach partition either:
• Build another “in-memory” hash table, using hash function h2 (≠ h1),

while discarding duplicates (handled on collisions).
• Sort while eliminating duplicates

  Cost: For partitioning, read R, write out each tuple, but
with fewer fields. This is read in next phase.

Comp 521 – Files and Databases Fall 2010 11

Discussion of Projection

  Sort-based approach is the standard; better handling
of skewed attribute distributions and result is sorted.

  If an index on the relation contains the wanted
projection attributes as its search key, then we use an
index-only scan (no fetching of the data pages).

  If an ordered (i.e., tree) index contains all wanted
attributes in the search key’s prefix we can
  Retrieve data entries in order (index-only scan), discard

unwanted fields, compare adjacent tuples to check for
duplicates.

Comp 521 – Files and Databases Fall 2010 12

Equijoins w/one common column

  In algebra: R S. Very common! Must be carefully
optimized. R S is large; so, R S followed by a
selection is inefficient.

  Assume: M tuples in R, pR tuples/page, N tuples in S,
pS tuples/page.

  We will consider more complex join conditions later.
  Cost metric: # of I/Os. We will ignore output costs.

SELECT *
FROM Reserves R, Sailors S
WHERE R.sid=S.sid

Comp 521 – Files and Databases Fall 2010 13

Simple Nested Loops Join

  Naïve Approach: For each tuple in the outer relation
R, we scan the entire inner relation S.
  Cost: M + (pR * M) * N = 1000 + 100*1000*500 I/Os.

  Page-at-a-time Nested Loops join: For each page of R,
get each page of S, and handle all matching pairs of
tuples <r, s>, where r is in R-page and S is in S-page.
  Cost: M + M*N = 1000 + 1000*500
  If smaller relation (S) is outer, cost = 500 + 500*1000

foreach tuple r in R:
 foreach tuple s in S:
 if ri == sj :
 add <r, s> to result

Comp 521 – Files and Databases Fall 2010 14

Index Nested Loops Join

  If there is an index on the join column of one relation
(say S), make it the inner loop, and exploit the index.
  Cost: M + ((M*pR) * cost of finding matching S tuples)

  For each R tuple, cost of probing S index is about 1.2
for hash index, 2-4 for B+ tree. Cost of then finding S
tuples depends on clustering.
  Clustered index: 1 I/O (typical), unclustered: upto 1 I/O

per matching S tuple.

foreach tuple r in R:
 foreach tuple s in S where ri == sj:
 add <r, s> to result

Comp 521 – Files and Databases Fall 2010 15

Examples of Index Nested Loops

  Hash-index (Alt. 2) on sid of Sailors (as inner):
  Scan Reserves: 1000 page I/Os, 100*1000 tuples.
  For each Reserves tuple: 1.2 I/Os to get data entry in index,

plus 1 I/O to get (the exactly one) matching Sailors tuple.
Total: 220,000 I/Os.

  Hash-index (Alt. 2) on sid of Reserves (as inner):
  Scan Sailors: 500 page I/Os, 80*500 tuples.
  For each Sailors tuple: 1.2 I/Os to find index page with

data entries, plus cost of retrieving matching Reserves
tuples. Assuming uniform distribution, 2.5 reservations
per sailor (100,000 / 40,000). Cost of retrieving them is 1 or
2.5 I/Os depending on whether the index is clustered.

Comp 521 – Files and Databases Fall 2010 16

Block Nested Loops Join
  Small twist on Simple Nested Loops
  Use one page as an input buffer for scanning the inner S,

one page as the output buffer, and use all remaining pages
to hold a “block” of outer R.
  For each matching tuple r in R-block, s in S-page, add <r, s> to

result. Then read next R-block, scan S, etc.

. . .

. . .

R & S
Hash table for block of R

(k < B-1 pages)

Input buffer for S Output buffer

. . .

Join Result

Comp 521 – Files and Databases Fall 2010 17

Examples of Block Nested Loops
  Cost:
  With Reserves (R) as outer and 100 buffer pages:

  Cost of scanning R is 1000 I/Os over 10 passes.
  Per pass of R, we scan Sailors (S); 10*500 I/Os.
  With space for 90 pages of R, we scan S 12 times.

  With 100-page block of Sailors as outer:
  Cost of scanning S is 500 I/Os; a total of 5 blocks.
  Per block of S, we scan Reserves; 5*1000 I/Os.

  Better yet, double buffer with a pass size of (B-3).
Fetch next block while joining current one

€

M + M /(B−2)⎡ ⎤N

Comp 521 – Files and Databases Fall 2010 18

Sort-Merge Join (R S) (review)
  Sort R and S on the join column, then scan them

to “merge” (on join col.), and output result tuples.
  Advance scan of R until current R-tuple >= current S

tuple, then advance scan of S until current
S-tuple >= current R tuple; do this until current
R tuple = current S tuple.

  At this point, one-or-more, ρ, R tuples match
one-or-more, σ, S tuples; output <r, s> for all pairs of
such tuples (ρ×σ).

  Then resume scanning R and S.

  Cost: M log M + N log N + (M+N)

i=j

Comp 521 – Files and Databases Fall 2010 19

Refinements of Sort-Merge Join
  Combine the merging phases of external sorting of R

and S with the merging required for the join.
  Using the sorting refinement that merges multiple runs each

pass, we sort R and S up to their last merge pass.
  Allocate 1 page per run of each relation, and “merge” while

checking the join condition.
  Cost: read+writes in (Pass 0.. Pass N-1) + read each relation

in (only) merging pass (+ writing of result tuples).
  Typically reduces I/O cost by a factor of ½.

  In practice, cost of sort-merge join, like the cost of
external sorting, is nearly linear.

Comp 521 – Files and Databases Fall 2010 20

Hash-Join
  Partition both

relations using a
common hash
function, h, (R tuples
in partition i will
only match S tuples
in partition i).

  Read in a partition
of R, hash it using
h2 (<> h!). Scan
matching partition
of S, search for
matches.

Partitions
of R & S

Input buffer
for Si

Hash table for partition
Ri (k < B-1 pages)

B main memory buffers Disk

Output
 buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers Disk Disk

Original
Relation OUTPUT

2 INPUT

1

hash
function

h B-1

Partitions

1

2

B-1

. . .

Comp 521 – Files and Databases Fall 2010 21

Observations on Hash-Join

  We want each partition of R to fit in B-2 buffer pages,
so #partitions, k = M / (B – 2), if we assume no skew

  If we build an in-memory hash table to speed up the
matching of tuples, a little more memory is needed.

  If the hash function does not partition uniformly, one
or more R partitions may not fit in memory. Can
apply hash-join technique recursively to this partition
and do the join of this R-partition with corresponding
S-partition.

Comp 521 – Files and Databases Fall 2010 22

Cost of Hash-Join

  In partitioning phase, read+write both relns; 2(M+N).
In matching phase, read both relns; M+N I/Os.

  In our running example, this is a total of 4500 I/Os.
  Sort-Merge Join vs. Hash Join:

  Both have a cost of 3(M+N) I/Os. Hash-Join is superior if
relation sizes differ greatly. Also, Hash-Join shown to be
highly parallelizable.

  Sort-Merge insensitive to data skew; and result is sorted.

Comp 521 – Files and Databases Fall 2010 23

General Join Conditions
  Equalities over several attributes (e.g., R.sid=S.sid

AND R.rname=S.sname):
  For Index NL, build index on <sid, sname> (if S is inner);

or use existing indexes on sid or sname.
  For Sort-Merge and Hash Join, sort/partition on

combination of the two join columns.

  Inequality conditions (e.g., R.rname < S.sname):
  For Index NL, need (clustered!) B+ tree index.

• Perform range probes on inner; # matches likely
to be much higher than for equality joins.

  Hash Join, Sort Merge Join not applicable.
  Block NL quite likely to be the best join method here.

Comp 521 – Files and Databases Fall 2010 24

Set Operations
  Intersection and cross-product special cases of join.
  Union (Distinct) and Except similar; we’ll do union.
  Sorting based approach to union:

  Sort both relations (on combination of all attributes).
  Scan sorted relations and merge them.
  Alternative: Merge runs from final pass of both relations.

  Hash based approach to union:
  Partition R and S using hash function h.

  Set Subtraction, Intersection (modified merge passes)
  R- S Subtract – write to output if key appears in R but not S
  R ∩ S Intersection – write to output if keys match

Comp 521 – Files and Databases Fall 2010 25

Aggregate Operations (AVG, MIN, etc.)

  Without grouping:
  In general, requires scanning the relation.
  Given index whose search key includes all attributes in the SELECT or

WHERE clauses, can do index-only scan.

  With grouping:
  Sort on group-by attributes, then scan relation and compute aggregate

for each group. (Can improve upon this by combining sorting and
aggregate computation.)

  Similar approach based on hashing on group-by attributes.
  Given tree index whose search key includes all attributes in SELECT,

WHERE and GROUP BY clauses, can do index-only scan; if group-by
attributes form prefix of search key, can retrieve data entries/tuples in
group-by order.

Comp 521 – Files and Databases Fall 2010 26

Impact of Buffering
  If several operations are executing concurrently,

estimating the number of available buffer pages is
guesswork.

  Repeated access patterns interact with buffer
replacement policy.
  e.g., Inner relation is scanned repeatedly in Simple

Nested Loop Join. With enough buffer pages to hold
inner, replacement policy does not matter. Otherwise,
MRU is best, LRU is worst (sequential flooding).

  Does replacement policy matter for Block Nested Loops?
  What about Index Nested Loops? Sort-Merge Join?

Comp 521 – Files and Databases Fall 2010 27

Summary
  A virtue of relational DBMSs: queries are composed of a

few basic operators; the implementation of these
operators can be carefully tuned (and it is important
to do this!).

  Many alternative implementation techniques for each
operator; no universally superior technique for most
operators.

  Must consider available alternatives for each
operation in a query and choose best one based on
system statistics, etc. This is part of the broader task
of optimizing a query composed of several ops.

