
Comp 521 – Files and Databases Fall 2010 1

Hash-Based
Indexes

Chapter 11

Comp 521 – Files and Databases Fall 2010 2

Introduction

  Hashing maps a search key directly to the pid of the
containing page/page-overflow chain

  Doesn’t require intermediate page fetches for
internal “steering nodes” of tree-based indices

  Hash-based indexes are best for equality selections.
They do not support efficient range searches.

  Static and dynamic hashing techniques exist
with trade-offs similar to ISAM vs. B+ trees.

Comp 521 – Files and Databases Fall 2010 3

Static Hashing
  # primary pages fixed, allocated sequentially,

never de-allocated; overflow pages if needed.
  h(k) mod M = bucket to which data entry with

key k belongs. (M = # of buckets)

h(key) mod N

h
key

Primary bucket pages Overflow pages

2
0

N-1

Comp 521 – Files and Databases Fall 2010 4

Static Hashing (Contd.)

  Buckets contain data entries.
  Hash function maps a search key to a bin number

h(key) 0 … M-1. Ideally uniformly.
  h(key) = (a * key + b) mod M, usually works well.
  a and b are constants; lots known about how to tune h.

  Long overflow chains can develop and degrade
performance. Dynamic techniques (Extendible and
Linear Hashing) address this problem.

Comp 521 – Files and Databases Fall 2010 5

Static Hashing Example
  Initially built over “Ages” attribute, with 4

records/page and h(Age) = Age mod 4

Initial Index

Note: records need
 not be ordered

Average Occupancy?

h

20* 24* 32*

41* 25* 29* 45*

26* 62* 18* 34*

31*

0

1

2

3

Comp 521 – Files and Databases Fall 2010 6

  Adding 28, 33
  Deleting 31, (leads to empty page)

Static Hashing Example

h

20* 24* 32*

41* 25* 29* 45*

26* 62* 18* 34*

0

1

2

3

33*

28*

31*

Comp 521 – Files and Databases Fall 2010 7

Hashing’s “Achilles Heel”
  Maintaining Balance

  Data is often “clustered”
  Hash function should uniformly distribute keys

over buckets. Demands a good hash function
(lots of research in this area)

  Bucket Spills
  What if M buckets are not enough?

Solution: new hash function
  Families of hash functions

 h0(key), h1(key), … hn(key)
  Transitions only redistribute overflowed buckets

Comp 521 – Files and Databases Fall 2010 8

Extendible Hashing

  Situation: Bucket (primary page) becomes full.
Change hashing function and reorganize.
Why not reorganize file by doubling # of buckets?
  Reading and writing all pages is expensive!

  Key Idea: Use directory of pointers to buckets, double
of buckets by doubling the directory, splitting just
the bucket that overflowed!
  Directory much smaller than file, so doubling it is much

cheaper. Only spilt pages are split. No overflows!
  Trick lies in how hash function is adjusted!

Comp 521 – Files and Databases Fall 2010 9

Example

  Directory is array of size 4.
  To find bucket for r, take

last `global depth’ # bits of h
(r); we denote r by h(r).
  If h(r) = 5 = binary 101,

it is in bucket pointed to
by 01.

  Insert: If bucket is full, split it
 (allocate new page, re-distribute).
  If necessary, double the directory.
 (Decision is based on comparing the
 directory’s global depth with local depth of the bucket.)

13*!00!

01!

10!

11!

2!

2!

2!

2!

2!

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY!

Bucket A!

Bucket B!

Bucket C!

Bucket D!

DATA PAGES!

10*!

1*! 21*!

4*! 12*! 32*!16*!

15*! 7*! 19*!

5*!

Comp 521 – Files and Databases Fall 2010 10

Insert h(r)=20 (Causes Doubling)

20*!

00!
01!
10!
11!

2! 2!

2!

2!

LOCAL DEPTH 2!

2!

DIRECTORY!

GLOBAL DEPTH
Bucket A!

Bucket B!

Bucket C!

Bucket D!

Bucket A2!
(`split image'!
of Bucket A)!

1*! 5*! 21*!13*!

32*!16*!

10*!

15*!7*! 19*!

4*! 12*!

19*!

2!

2!

2!

000!
001!
010!
011!
100!
101!

110!
111!

3!

3!

3!
DIRECTORY!

Bucket A!

Bucket B!

Bucket C!

Bucket D!

Bucket A2!
(`split image'!
of Bucket A)!

32*!

1*! 5*! 21*!13*!

16*!

10*!

15*!7*!

4*! 20*!12*!

LOCAL DEPTH

GLOBAL DEPTH

Comp 521 – Files and Databases Fall 2010 11

Points to Note
  20 = binary 10100. Last 2 bits (00) tell us r belongs in

A or A2. Last 3 bits needed to tell which.
  Global depth of directory: Max # of bits needed to tell which

bucket an entry belongs to.
  Local depth of a bucket: # of bits used to determine if an

entry belongs to this bucket.

  When does bucket split cause directory doubling?
  Before insert, local depth of bucket = global depth. Insert

causes local depth to become > global depth; directory is
doubled by copying it over and ‘fixing’ pointer to split
image page. (Use of least significant bits enables efficient
doubling via copying of directory!)

Comp 521 – Files and Databases Fall 2010 12

Directory Doubling

00!

01!
10!

11!

2!

Why use least significant bits in directory?
➳  Allows for doubling via copying!

000!

001!
010!

011!

3!

100!

101!
110!

111!

vs.

0!

1!

1!

6*
6*

6*

6 = 110

00!

10!
01!

11!

2!

3!

0!

1!

1!

6*
6* 6*

6 = 110
000!

100!
010!

110!

001!

101!
011!

111!

Least Significant Most Significant

Comp 521 – Files and Databases Fall 2010 13

Comments on Extendible Hashing
  If directory fits in memory, equality search

answered with one disk access; else two.
  100MB file, 100 bytes/rec, 4K pages contains 1,000,000

records (as data entries) and 25,000 directory elements;
chances are high that directory will fit in memory.

  Directory grows in spurts, and, if the distribution of hash
values is skewed, directory can grow large.

  Multiple entries with same hash value cause problems!

  Delete: If removal of data entry makes bucket
empty, it can be merged with its ‘split image’. If
each directory element points to same bucket as its
split image, can halve directory.

Comp 521 – Files and Databases Fall 2010 14

Linear Hashing

  This is another dynamic hashing scheme, an
alternative to Extendible Hashing.

  LH avoids the need for a directory, yet handles the
problem of long overflow chains.

  Idea: Use a family of hash functions h0, h1, h2, ...
  hi(key) = h(key) mod(2iN); N = initial # buckets
  h is some hash function (range is not 0 to N-1)
  If N = 2d0, for some d0, hi consists of applying h and looking

at the last di bits, where di = d0 + i.
  hi+1 doubles the range of hi (similar to directory doubling)

Comp 521 – Files and Databases Fall 2010 15

Linear Hashing (Contd.)

  Directory avoided in LH by allowing overflow
pages, and choosing bucket to split round-robin.
  Splitting proceeds in `rounds’. Round ends when all

NR initial (for round R) buckets are split. Buckets 0 to
Next-1 have been split; Next to NR yet to be split.

  Current round number is Level.
  Search: To find bucket for data entry r, find hLevel(r):

• If hLevel(r) in range Next to NR , r belongs here.
• Else, r could belong to bucket hLevel(r)

or bucket hLevel(r) + NR;
must apply hLevel+1(r) to find out.

Comp 521 – Files and Databases Fall 2010 16

Overview of LH File

  In the middle of a round.

Level h

Buckets that existed at the
beginning of this round:

this is the range of

Next
Bucket to be split

of other buckets) in this round

Buckets split in this round:
If hLevel (search key value)
is in this range, must use
hLevel-1(search key value)

`split image' bucket.
to decide if entry is in

created (through splitting
`split image' buckets:

Comp 521 – Files and Databases Fall 2010 17

Linear Hashing (Contd.)
  Insert: Find bucket by applying hLevel / hLevel+1:

  If bucket to insert into is full:
• Add overflow page and insert data entry.
• Split Next bucket and any associated

overflow pages and increment Next.
• The bucket that is split may not be the same

as the one that overflowed!

  Can choose alternate criterions to ‘trigger’ split
  Next must be updated sequentially. Since buckets are split

round-robin, long overflow chains don’t develop!
  Doubling of directory in Extendible Hashing is similar;

switching of hash functions is implicit in how the # of bits
examined is increased

Comp 521 – Files and Databases Fall 2010 18

Example of Linear Hashing
  On split, hLevel+1 is used to redistribute entries.
  If bucket is full, Spill, Split ‘Next’, Move ‘Next’

0
h h

1

(This info
is for illustration
only!)

Level=0, N=4

00

01

10

11

000

001

010

011

(The actual contents
of the linear hashed
file)

Next=0
PRIMARY

PAGES

Data entry r
with h(r)=5

Primary
bucket page

44* 36* 32*

25* 9* 5*

14* 18* 10* 30*

31* 35* 11* 7*

0
h h

1

Level=0

00

01

10

11

000

001

010

011

Next=1

PRIMARY
PAGES

44* 36*

32*

25* 9* 5*

14* 18* 10* 30*

31* 35* 11* 7*

OVERFLOW
PAGES

43*

00 100

Insert 43

Comp 521 – Files and Databases Fall 2010 19

Insert 37 (00100101)

0
h h

1

Level=0

00

01

10

11

000

001

010

011

Next=1

PRIMARY
PAGES

44* 36*

32*

25* 9* 5*

14* 18* 10* 30*

31* 35* 11* 7*

OVERFLOW
PAGES

43*

00 100

  References page ≥ “Next”, check h0 page, fits, no action

37*

Comp 521 – Files and Databases Fall 2010 20

Insert 29 (00011101)

0
h h

1

Level=0

00

01

10

11

000

001

010

011

Next=1

PRIMARY
PAGES

44* 36*

32*

25* 9* 5*

14* 18* 10* 30*

31* 35* 11* 7*

OVERFLOW
PAGES

43*

00 100

  References page ≥ “Next”, check h0 page
  Spill, split, move Next

37*

0
h h

1

Level=0

00

01

10

11

000

001

010

011

Next=2

PRIMARY
PAGES

44* 36*

32*

25* 9*

14* 18* 10* 30*

31* 35* 11* 7*

OVERFLOW
PAGES

43*

00 100

01 101 5* 37* 29*

If we had inserted
‘28’ instead, then
page < Next, so we’d
need to consider h1
to determine the
correct bucket.

Comp 521 – Files and Databases Fall 2010 21

Insert 22 (00010110)
  References page ≥ “Next”, check h0 page
  spill, split, move Next

0
h h

1

Level=0

00

01

10

11

000

001

010

011

Next=2

PRIMARY
PAGES

44* 36*

32*

25* 9*

14* 18* 10* 30*

31* 35* 11* 7*

OVERFLOW
PAGES

43*

00 100

01 101 5* 37* 29*

Level=0

0
h h

1

00

01

10

11

000

001

010

011

Next=3

PRIMARY
PAGES

44* 36*

32*

25* 9*

18* 10*

31* 35* 11* 7*

OVERFLOW
PAGES

43*

00 100

01 101 5* 37* 29*

11 110 14* 30* 22*

Comp 521 – Files and Databases Fall 2010 22

Add 51 (00110011): End of a Round

0
h h

1

00

01

10

11

000

001

010

011

Next=3

PRIMARY
PAGES

44* 36*

32*

25* 9*

18* 10*

31* 35* 11* 7*

OVERFLOW
PAGES

43*

00 100

01 101 5* 37* 29*

11 110 14* 30* 22*

1011

1
h h

2

1000

1001

1010

Next=0

PRIMARY
PAGES

44* 36*

32*

25* 9*

18* 10*

35* 11* 51*

OVERFLOW
PAGES

7*

1100

1101 5* 37* 29*

1110 14* 30* 22*

000

001

010

011

100

101

110

1111 111 31*

Comp 521 – Files and Databases Fall 2010 23

LH Described as a Variant of EH
  The two schemes are actually quite similar:

  Begin with an EH index where directory has N elements.
  Use overflow pages, split buckets round-robin.
  First split is at bucket 0. (Imagine directory being doubled

at this point.) But elements <1,N+1>, <2,N+2>, ... are the
same. So, need only create directory element N, which
differs from 0, now.

• When bucket 1 splits, create directory element N+1, etc.

  So, directory can double gradually. Also, primary
bucket pages are created in order. If they are allocated
in sequence too (so that finding ith is easy), we
actually don’t need a directory! Voila, LH.

Comp 521 – Files and Databases Fall 2010 24

Summary

  Hash-based indexes: best for equality searches,
cannot support range searches.

  Static Hashing can lead to long overflow chains.
  Extendible Hashing avoids overflow pages by

splitting a full bucket when a new data entry is to be
added to it. (Duplicates may require overflow pages.)
  Directory to keep track of buckets, doubles periodically.
  Can get large with skewed data; additional I/O if this

does not fit in main memory.

Comp 521 – Files and Databases Fall 2010 25

Summary (Contd.)
  Linear Hashing avoids a directory by splitting

buckets round-robin, and using overflow pages.
  Overflow pages not likely to be long, nor around for long.
  Duplicates handled easily.
  Space utilization could be lower than Extendible Hashing,

since splits not concentrated on `dense’ data areas.
• Can tune criterion for triggering splits to trade-off

slightly longer chains for better space utilization.

  For hash-based indexes, a skewed data distribution is
one in which the hash values of data entries are not
uniformly distributed!

