WORLD of COW
Tree-Structured

Indexes

Chapter 10

© Original Artist
Reprod uc’tlon nghts obtainable from
- $ownd CartooRStockicom:

Comp 521 - Files and Databases Fall 2010 1



... Q

G

Introduction

% As for any index, 3 alternatives for data entries k*:
= index refers to actual data record with key value k
= index refers to list of <k, rid> pairs
* index refers to list of <k, [rid list]>

+ Choice is orthogonal to the indexing technique
used to locate data entries k*.

+ Tree-structured indexing techniques support
both range searches and equality searches.

% ISAM: static structure; B+ tree: dynamic,
adjusts gracefully under inserts and deletes.

Comp 521 - Files and Databases Fall 2010 2



Range Searches

< “Find all students with gpa > 3.0”

- If data is in sorted file, do binary search to find first such
student, then scan to find others.

- Cost of binary search can be quite high (must read entire page
to access one record).

< Simple idea: Create an "index’ file.

, k1 k2 kN Index File
1 \\ \‘
V \ \
Page 1 Page 2 Page 3 Page N Data File

v~ Can do binary search on (smaller) index file!
Comp 521 - Files and Databases Fall 2010



ISAM - Indexed Sequential Access Method

index entry
|

P'O K1 FI,1 K2 FI,2 o o o Kum

’ ! ! !
< Index file may be quite large.

7

+ Can be applied hierarchically!

Non-leaf
Pages
Leaf | coe | :.,.: | coe | | coe
Pages D D v; A _y
\ s P
|:| Overflow ------ > : \\ S’ T

a e 7 -
Pag Primary pages

w Leaf pages contain data entries (i.e. actual records or <key, rid> pairs.

Comp 521 - Files and Databases Fall 2010



Comments on ISAM

» File creation: Leaf (data) pages allocated
sequentially, sorted by search key; then index
pages allocated, then space for overflow pages. |Data

. . P
» Index entries: <search key value, page id>; ages
they “direct’ search for data entries,
which are in leaf pages.
Index Pages

» Search: Start at root; use key comparisons
to go to leaf. Costlog N
F = # entries/index pg, N = # leaf pgs

» Insert: Find leaf data entry belongs to, Overflow pages

put it there if space is available, else allocate an
overflow page, put it there, and link it in.

- Delete: Find and remove from leaf; if empty overflow page, de-
allocate.

w Static tree structure: inserts/deletes affect only leaf pages.
Comp 521 - Files and Databases Fall 2010 5



| —

Example ISAM Tree

< Each node can hold 2 entries; no need for
‘next-leat-page” pointers. (Why?)

Root ™—a.
40
20 33 51 63
/ |
/ l \ V \
10* ‘ 15* 20* ‘ 27* 33* | 37 40* ‘ 46 51* 55* 63* 97*

Comp 521 - Files and Databases Fall 2010 6



‘.000

y

After Inserting 23%, 48%, 41%, 42* 7=+

“Static” Root ~a

Index | 40 |
Pages / \

20| | 33 51|63

/
Primary / V \ / V \
Leaf 10* | 15* 20* | 27* 33* | 37* 40* | 46* 51 | 55* 63* | 97*
Pages

\ \

i J’ “D * 9
Overflow 23* 48* | 41* ynamic
Pages l

42*

Comp 521 - Files and Databases Fall 2010 7



... Then Deleting 42%, 51%, 97*

Root ™—a.
40
20 33 51 63
/
/ j V \
10* 15* 20* 27* 33* 37* 40* 46* 55* 63*
23* 48+ | 417

w Note that 51* appears in index, but not in leaf!

Comp 521 - Files and Databases Fall 2010 8



..00

G

B+ Tree: Most Widely Used Index

+ Insert/delete at log N cost; keep tree balanced.
(F = fanout, N = # leaf pages)
% Minimum 50% occupancy. Each internal non-

root node contains d <= m <= 2d entries. The
parameter d is called the order of the tree.

% Supports equality and range-searches efficiently.

Index Entries
(Direct search)

Data Entries
("Sequence set")

Comp 521 - Files and Databases Fall 2010



| ]

Example B+ Tree

<+ Search begins at root, and key comparisons
direct it to a leaf (as in ISAM).

< Search for 5%, 15%, all data entries >= 24* ...

Root \

13 17 24 30

2% [ 3* | 5 | 7* 14*| 16* 19%| 20* | 22* 24~ | 27* | 29* 33*| 34*| 38* | 39*

w Based on the search for 15%, we know it is not in the tree!
Comp 521 - Files and Databases Fall 2010 10




... Q

G

B+ Trees in Practice

<+ Typical order: 100. Typical fill-factor: 67%.
- average fanout = 133

+ Typical capacities:
= Height 4: 133* = 312,900,700 records
- Height 3: 133° = 2,352,637 records

+ Can often hold top levels in buffer pool:
- Level 1= 1 page = 8 Kbytes
- Level2= 133 pages= 1 Mbyte
- Level 3 =17,689 pages = 133 Mbytes

Comp 521 - Files and Databases Fall 2010 11



Inserting into a B+ Tree

< Find correct leaf L.

< Put data entry onto L.
- If L has enough space, done!
- Else, must split L (into L and a new node L2)

* Allocate new node

* Redistribute entries evenly

* Copy up middle key.

* Insert index entry pointing to L2 into parent of L.

<« This can happen recursively

= To split index node, redistribute entries evenly, but push up
middle key. (Contrast with leaf splits.)

+ Splits “grow” tree; root split increases height.
= Tree growth: gets wider or one level taller at top.

Comp 521 - Files and Databases Fall 2010 12



Inserting 8* into Example B+ Tree =+

< Observe how
minimuim
occupancy 1s
guaranteed in
both leaf and

index pg splits.

4

- Note difference
between copy-
up and push-up;
be sure you
understand the

L)

L)

reasons for this.

Comp 521 - Files and Databases

Root \
|13“17 |24 |Jao|
|z'|3'|5'|7-| |14'|1s-| | | |19'|zo' zz-l | |24-|z7'|29'| | |33'|u-|3a-lsg'|
/ 5 copied up
K ™\ \
3* 5|7 | 8
17 pushed up
13 241 30
b/
Fall 2010 13



G

Example B+ Tree After Inserting 8* =+ :

Root ™\

5 13 24 (| 30
7 \ ~ 7 N
2% [ 3* 5 7| 8* 14*|16* 1979 20* 22* 24| 27*(29* 33* 34* 38*| 39*

“* Notice that root was split, leading to increase in height.

* In this example, we can N
avoid split by redistributing | |

entries; however, this is ' ‘ \
usually not done — — — —

in practice.

Comp 521 - Files and Databases Fall 2010 14



..00

U
Deleting a Data Entry from a B+

< Start at root, find leaf L with entry, if it exists.

< Remove the entry.
= If L is at least half-full, done!
- If L has only d-1 entries,

* Try to re-distribute, borrowing keys from sibling
(adjacent node with same parent as L).

* If redistribution fails, merge L and sibling.

<+ If merge occurred, must delete entry (pointing to L
or sibling) from parent of L.

% Merge could propagate to root, decreasing height.

Comp 521 - Files and Databases Fall 2010 15



\y Example Tree After (Inserting 87,
Then) Deleting 19" and 20* ...

Before: o

[ —

17
5 13 27 30
4 N h Y \
2*| 3* 5| 7*| 8* 14*|1 16* 2271 24% 27%| 29* 33* 34*| 38*( 39*

+ Deleting 19* is easy.

‘0

» Deleting 20* is done with redistribution.
Notice how middle key is copied up.

Comp 521 - Files and Databases Fall 2010 16




... And Then Deleting 24*

< Must merge (twice).

<% Observe “foss” of index \

entry (27) in first merge | 30
and “pull down” of index /
. A [
entry (17) in second. 22° | 277 | 260 33+ | 34 | 38* | 39"

. RohA
Result: 5 || 13 || 17 || 30

f‘\/\ ¥ A ¥

2* 3* 5* 7* 8* 14* 16* 22* 27* 29* 33* 34* 38* 39*

Comp 521 - Files and Databases Fall 2010 17



G

| S—

Example of Non-leaf Redistributio

<+ Tree is shown below during deletion of 24*. (What
could be a possible initial tree?)

<+ In contrast to previous example, can redistribute
entry from left child of root to right child.

Root\A

22

5 13 |[17 || 20 30
/ ¥ y /\\A ¥ /\\&
2% 3* 5% 7*| 8* 14* 16* 171 18" 20* 21% 22% 271 29° 334 34% 38* 39¥

Comp 521 - Files and Databases

Fall 2010

18



%
Example of Non-leaf Redistributio

<+ Tree is shown below during deletion of 24*. (What
could be a possible initial tree?)

| S—

<+ In contrast to previous example, can redistribute
entry from left child of root to right child.

Root\A

22

l
5 | 13|17 || 20 30

2% 3* 5% 7*| 8* 14* 16* 171 18" szTm* 22% 271 29° 334 34% 38* 39¥

Comp 521 - Files and Databases Fall 2010 19



%
After Redistribution

+ Intuitively, entries are redistributed by ‘pushing
through’ the splitting entry in the parent node.

<+ It suffices to re-distribute index entry with key 20;
we’ve re-distributed 17 as well for illustration.

ROCNA

17

5 (| 13 20| 22 (| 30
) , i 1
2% 3* S5 7*| 8* 14*(16* 17118 20* 21* 22% 274 294 33*34%38*39*

Comp 521 - Files and Databases Fall 2010 20



‘..o Q
00."

Prefix Key Compression

< Important to increase fan-out. (Why?)

+ Key values in index entries only “direct traffic”;
can often compress them.

- E.g., If we have adjacent index entries with search
key values Dannon Yogurt, David Smith and
Devarakonda Murthy, we can abbreviate David Smith
to Dav. (The other keys can be compressed too ...)

* Is this correct? Not quite! What if there is a data entry
Davey Jones? (Can only compress David Smith to Davi)

* In general, while compressing, must leave each index entry
greater than every key value (in any subtree) to its left.

+ Insert/delete must be suitably modified.

Comp 521 - Files and Databases Fall 2010 21



...o Q
00."

Bulk Loading of a B+ Tree

+ If we have a large collection of records, and we
want to create a B+ tree on some field, doing so
by repeatedly inserting records is very slow.

< Bulk Loading can be done much more efficiently.

<« Initialization: Sort all data entries, insert pointer
to first (leaft) page in a new (root) page.

Rok ] _
Sorted pages of data entries; not yet in B+ tree

e

3% [ 4* ||| 6% | 9% | |10*|11*| |12*13%| [20*22* |23*|31* [35*[36%| [38*|41*| |44*

Comp 521 - Files and Databases Fall 2010 22



... Q

'g 0

Bulk Loading (Contd.)

Ro}A
< Index entries for leaf 10129

pages always / I

entered into Tlght' ol 112 1 23] 33, not yet in B+ tree

most index page just j / l J \ [
above leaf level. PN AP NI NI BNE 2PN B

Data entry pages

When thls fllls up, 3% 4% | 6%| 9% |10911% (127137 |20122% |23% 317 [35%367|||38141% |44"

it splits. (Split may Root *[T20

g0 up right-most N

path to the I'OOt.) | 10| | 35|. Data en.try pages
< Much faster than / \, l, \ B

repeated inserts, o] 112 12| 138,

especially if one . ‘Z . ,\l » / ml m/ N\

considers locking! (374 [e]er| 1ol [12013] [20f22] [23731] 35056 [387a77 a4
Comp 521 - Files and Databases Fall 2010 23




Summary of Bulk Loading

% Option 1: multiple inserts.

= Slow.

- Does not give sequential storage of leaves.
% Option 2: Bulk Loading

- Has advantages for concurrency control.

- Fewer [/Os during build.

- Leaves will be stored sequentially (and linked, of
course).

= Can control “fill factor” on pages.

Comp 521 - Files and Databases Fall 2010 24



..00

%
A Note on “Order”

< Order (d) concept replaced by physical space
criterion in practice ("at least half-full’).

- Index pages can typically hold many more entries
than leaf pages.

= Variable sized records and search keys mean differnt
nodes will contain different numbers of entries.

- Even with fixed length fields, multiple records with
the same search key value (duplicates) can lead to
variable-sized data entries (if we use Alternative (3)).

Comp 521 - Files and Databases Fall 2010 25



.!00

G

Summary

+ Tree-structured indexes are ideal for range-
searches, also good for equality searches.
+ ISAM 1is a static structure.

= Only leaf pages modified; overflow pages needed.

= Overflow chains can degrade performance unless size
of data set and data distribution stay constant.

% B+ tree is a dynamic structure.

- Inserts/deletes leave tree height-balanced; log N cost.
- High fanout (F) means depth rarely more than 3 or 4.
- Almost always better than maintaining a sorted file.

Comp 521 - Files and Databases Fall 2010 26



.!00

%
Summary (Contd.)

= Typically, 67% occupancy on average.

= Usually preferable to ISAM, modulo locking
considerations; adjusts to growth gracefully.

- If data entries are data records, splits can change rids!
+ Key compression increases fanout, reduces height.

<+ Bulk loading can be much faster than repeated
inserts for creating a B+ tree on a large data set.

% Most widely used index in database management
systems because of its versatility. One of the most
optimized components of a DBMS.

Comp 521 - Files and Databases Fall 2010 27



