
Comp 521 – Files and Databases Fall 2010 1

Database Application
Development

Chapter 6.1-6.4

Comp 521 – Files and Databases Fall 2010 2

Overview

Concepts covered in this lecture:
 SQL in application code
 Embedded SQL
 Cursors
 Dynamic SQL
 sqlite3 in Python

Comp 521 – Files and Databases Fall 2010 3

Justification for access to databases
via programming languages:

  SQL is a direct query language; as such, it has
limitations.

  via programming languages:
  Complex computational processing of the data.
  Specialized user interfaces.
  Access to more than one database at a time.

Comp 521 – Files and Databases Fall 2010 4

SQL in Application Code
  SQL commands can be called from within a

host language (e.g., Java or Python) program.

  SQL statements can refer to host variables
(including special variables used to return status).

  Must include a statement to connect to the right
database.

Comp 521 – Files and Databases Fall 2010 5

SQL in Application Code (Contd.)
Impedance mismatch:
  SQL relations are (multi-) sets of records, with

no a priori bound on the number of records.
  No such data structure exist in traditional

procedural programming languages such as
C++. (Though now: Python)

  SQL language interfaces often support a
mechanism called a cursor to handle this.

Comp 521 – Files and Databases Fall 2010 6

Desirable features of such systems:
  Ease of use.

  Conformance to standards for existing
programming languages, database query
languages, and development environments.

  Interoperability: the ability to use a common
interface to diverse database systems on
different operating systems

Comp 521 – Files and Databases Fall 2010 7

Vendor specific solutions
  Oracle PL/SQL: A proprietary PL/1-like language

which supports the execution of SQL queries:
  Advantages:

  Many Oracle-specific features, not common to other systems,
are supported.

  Performance may be optimized for Oracle-based systems.
  Disadvantages:

  Ties the applications to a specific DBMS.
  The application programmer must depend upon the vendor

for the application development environment.
  It may not be available for all platforms.

Comp 521 – Files and Databases Fall 2010 8

Vendor Independent solutions
based on SQL
Three basic strategies:

  Embed SQL in the host language
(Embedded SQL, SQLJ)

• SQL code appears inline with other host-language code
• Calls are resolved at compile tiome

  SQL call-level interfaces (Dynamic SQL)
• Wrappers that pass strings from the host language to a

separate interpreted SQL process

  SQL modules or libraries

Comp 521 – Files and Databases Fall 2010 9

Embedded SQL

  Approach: Embed SQL in the host language.
  A preprocessor converts the SQL statements into

special API calls.
  Then a regular compiler is used to compile the

code.
  Language constructs:

  Connecting to a database:
EXEC SQL CONNECT

  Declaring variables:
EXEC SQL BEGIN (END) DECLARE SECTION

  Statements:
EXEC SQL Statement;

Comp 521 – Files and Databases Fall 2010 10

Embedded SQL: Variables
  There is a need for the host language to share

variable with the database’s SQL interface:

EXEC SQL BEGIN DECLARE SECTION
char c_sname[20];
long c_sid;
short c_rating;
float c_age;
EXEC SQL END DECLARE SECTION

  Two special “error” variables:
  SQLCODE (long, is negative if an error has occurred)
  SQLSTATE (char[6], predefined codes for common errors)

Comp 521 – Files and Databases Fall 2010 11

Disadvantages:

  Directives must be preprocessed, with subtle
implications for code elsewhere

  It is a real pain to debug preprocessed
programs.

  The use of a program-development
environment is compromised substantially.

  The preprocessor must be vendor and
platform specific.

Comp 521 – Files and Databases Fall 2010 12

Dynamic SQL
  SQL query strings are not always known at compile

time (e.g., spreadsheet, graphical DBMS frontend):
Allow construction of SQL statements on-the-fly

  Example:
char c_sqlstring[]= 
{“DELETE FROM Sailors WHERE rating>5”};

EXEC SQL PREPARE readytogo FROM :c_sqlstring;
EXEC SQL EXECUTE readytogo;

Comp 521 – Files and Databases Fall 2010 13

SQL Modules

  In the module approach, invocations to SQL are
made via libraries of procedures , rather than via
preprocessing

  Special standardized interface: procedures/objects

  Pass SQL strings from language, presents result sets
in a language-friendly way

  Supposedly DBMS-neutral
  a “driver” traps the calls and translates them into DBMS-

specific code
  database can be across a network

Comp 521 – Files and Databases Fall 2010 14

Example module based
  Python’s built-in SQLite package

  Add-ons for
• MySQL (MySQL for Python),
• Oracle (Oracle+Python, cx_Oracle)
• Postgres (PostgreSQL)
•  etc.

  Sun’s JDBC: Java API
  Part of the java.sql package

Comp 521 – Files and Databases Fall 2010 15

Cursors

  Can declare a cursor on a relation or query
statement (which generates a relation).

  Can open a cursor, and repeatedly fetch a tuple then
move the cursor, until all tuples have been retrieved.
  Can use a special clause, called ORDER BY, in queries that

are accessed through a cursor, to control the order in
which tuples are returned.

• Fields in ORDER BY clause must also appear in SELECT clause.

  In some cases, you can also modify/delete tuple
pointed to by a cursor, and changes are reflected in
the database

Comp 521 – Files and Databases Fall 2010 16

Get names of sailors who’ve reserved
a red boat, by rating in alphabetical order

  First, one more SQL feature

  Note that the ORDER BY clause determines the
order which query results are returned

  Can use multiple attribute names to resolve ties
  Optional ASC or DESC keyword after attribute for

ascending or descending order respectively

 SELECT S.sname, S.rating
 FROM Sailors S, Boats B, Reserves R
 WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’
 ORDER BY S.rating DESC, S.sname ASC

Comp 521 – Files and Databases Fall 2010 17

Verdict on SQL Modules
  Advantages over embedded SQL:

  Cleaner separation of SQL from the host
programming language.

  Debugging is much more straightforward, since
no preprocessor is involved.

  Disadvantages:
  The module libraries are specific to the

programming language and DBMS environment.
Thus, portability is somewhat compromised.

Comp 521 – Files and Databases Fall 2010 18

Python and SQL Data Types

Python type SQLite type

None NULL
int INTEGER
long INTEGER
float REAL
str (UTF8-encoded) TEXT
unicode TEXT
buffer BLOB

Comp 521 – Files and Databases Fall 2010 19

SQLite type conversions to Python

SQLite type Python type

NULL None

INTEGER int or long,
depending on size

REAL float

TEXT depends on text_factory,
 unicode by default

BLOB buffer

Comp 521 – Files and Databases Fall 2010 20

Embedding SQL in Python
import sqlite3
if __name__ == '__main__':
 db = sqlite3.connect("sailors.db")
 cursor = db.cursor()

 cursor.execute("""SELECT s.sname, b.bname, r.day
 FROM Sailors s, Reserves r, Boats b
 WHERE s.sid=r.sid AND r.bid=b.bid
 AND b.color='red’
 ORDER BY s.sname""")

 print " Name Boat Date”
 for row in cursor:
 print "%12s %12s %10s" % row

 db.close()

Comp 521 – Files and Databases Fall 2010 21

More Involved Example
  Increase after three or more reservations
import sqlite3
if __name__ == '__main__':
 db = sqlite3.connect("sailors.db")
 cursor = db.cursor()
 print "BEFORE”
 cursor.execute("SELECT * FROM Sailors")
 for row in cursor:
 print row

 cursor.execute("""SELECT s.sid, COUNT(r.bid) AS reservations
 FROM Sailors s, Reserves r
 WHERE s.sid=r.sid
 GROUP BY s.sid
 HAVING s.rating < 10""")

 for row in cursor.fetchall():
 if (row[1] > 2):
 cursor.execute("""UPDATE Sailors
 SET rating = rating + 1
 WHERE sid=%d""" % row[0])

 print "AFTER”
 cursor.execute("SELECT * FROM Sailors")
 for row in cursor:
 print row
 db.close()

SQL could do
more or less of
the work in this
simple example

Comp 521 – Files and Databases Fall 2010 22

Where Python and SQL meet
  UGLY inter-language semantics

  Within SQL we can reference a relation’s attributes
by its field name

  From the cursor interface we only see a tuple in
which attributes are indexed by position

  Can be a maintenance nightmare

  Solution “Row-factories”
  Allows you to remap each relation to a local

Python data structure
(Object, dictionary, array, etc.)

  Built-in “dictionary-based” row factory

Comp 521 – Files and Databases Fall 2010 23

With a Row-Factory
import sqlite3

if __name__ == '__main__':
 db = sqlite3.connect("sailors.db")
 db.row_factory = sqlite3.Row
 cursor = db.cursor()

 cursor.execute("""SELECT s.sid, COUNT(r.bid) as reservations
 FROM Sailors s, Reserves r
 WHERE s.sid=r.sid
 GROUP BY s.sid
 HAVING s.rating < 10""")

 for row in cursor.fetchall():
 if (row['reservations'] > 2):
 cursor.execute("""UPDATE Sailors
 SET rating = rating + 1
 WHERE sid=%d""" % row['sid'])
 db.commit()
 db.close()

Must come before
dependent cursor

Must “commit” to
make INSERTs
and/or UPDATEs
persistant

Comp 521 – Files and Databases Fall 2010 24

Other SQLite in Python Features
  Alternatives to iterating over cursor

  Fetch the next tuple:
 tvar = cursor.fetchone()

  Fetch N tuples into a list:
 lvar = cursor.fetchmany(N)

  Fetch all tuples into a list:
 lvar = cursor.fetchall()

  Alternative execution statement
  Repeat the same command over an iterator
cursor.executemany(“SQL Statement”, args)

  Execute a list of ‘;’ separted commands
cursor.executescript(“SQL Statements;”)

Comp 521 – Files and Databases Fall 2010 25

Substitution
  Usually your SQL operations will need to use

values from Python variables. You shouldn’t
assemble your query using Python’s string
formatters because doing so is insecure; it
makes your program vulnerable to an SQL
injection attack.

  Instead, use the DB-API’s parameter
substitution. Put ‘?’ as a placeholder
wherever you want to use a value, and then
provide a tuple of values as the second
argument to the cursor’s execute() method.

Comp 521 – Files and Databases Fall 2010 26

With a Row-Factory
import sqlite3

if __name__ == '__main__':
 db = sqlite3.connect("sailors.db")
 db.row_factory = sqlite3.Row
 cursor = db.cursor()

 cursor.execute("""SELECT s.sid, COUNT(r.bid) as reservations
 FROM Sailors s, Reserves r
 WHERE s.sid=r.sid
 GROUP BY s.sid
 HAVING s.rating < 10""")

 for row in cursor.fetchall():
 if (row['reservations'] > 2):
 cursor.execute("""UPDATE Sailors
 SET rating = rating + 1
 WHERE sid=?"””, (row['sid'],))
 db.commit()
 db.close()

Comp 521 – Files and Databases Fall 2010 27

Extracting the dB’s Schema
[~/Courses/Comp521_S10/Stuff]$ python
Python 2.6.4 (r264:75706, Nov 12 2009, 00:21:44)
[GCC 4.2.1 (Apple Inc. build 5646) (dot 1)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import sqlite3
>>> db = sqlite3.connect('Sailors.db')
>>> cursor = db.cursor()
>>> cursor.execute("SELECT * FROM sqlite_master WHERE type='table'")
<sqlite3.Cursor object at 0x100430920>
>>> for row in cursor:
... print row
...
(u'table', u'Sailors', u'Sailors', 2, u'CREATE TABLE Sailors(sid INTEGER,
 sname STRING,
 rating INTEGER,
 age REAL)')
(u'table', u'Boats', u'Boats', 3, u'CREATE TABLE Boats(bid INTEGER,
 bname STRING,
 color STRING)')
(u'table', u'Reserves', u'Reserves', 4, u'CREATE TABLE Reserves(sid INTEGER,
 bid INTEGER,

 day DATE)')
>>>

Comp 521 – Files and Databases Fall 2010 28

Next Time
  JDBC approach from

embedding SQL
  Extra levels of

indirection to
translate between
between a uniform
database API and
alternate DBMS
backends

