
Comp 521 – Files and Databases Fall 2010 1

SQL: Queries,
Constraints, Triggers

Part 2

Chapter 5.5-5.10

Comp 521 – Files and Databases Fall 2010 2

Aggregate Operators

  Significant extension of
relational algebra.

  Computation and
summarization operations

  Result aggregates rather
than each individually

  E.x. How many Sailor instances
in the sailor relation?

COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)
MIN (A)

SELECT COUNT (*)
FROM Sailors S

single column

Comp 521 – Files and Databases Fall 2010 3

More examples

  Average age of Sailors with a rating of 10?

  Names of all Sailors who have
achieved the maximum rating

SELECT AVG(S.age)
FROM Sailors S
WHERE S.rating=10

SELECT S.sname
FROM Sailors S
WHERE S.rating=(SELECT MAX(S2.rating)
 FROM Sailors S2)

sid sname rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

31 Lubber 8 55.5

32 Andy 8 25.5

58 Rusty 10 35.0

64 Horatio 7 35.0

71 Zorba 10 16.0

74 Horatio 9 35.0

85 Art 3 25.5

95 Bob 3 63.5

Comp 521 – Files and Databases Fall 2010 4

More examples (cont)

  How many distinct ratings for Sailors less
than 40 years of age?

  Names of all Sailors who have
achieved the maximum rating

SELECT AVG (DISTINCT S.age)
FROM Sailors S
WHERE S.rating=10

SELECT COUNT (DISTINCT S.rating)
FROM Sailors S
WHERE S.age < 40.0

sid sname rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

31 Lubber 8 55.5

32 Andy 8 25.5

58 Rusty 10 35.0

64 Horatio 7 35.0

71 Zorba 10 16.0

74 Horatio 9 35.0

85 Art 3 25.5

95 Bob 3 63.5

Comp 521 – Files and Databases Fall 2010 5

Find name and age of the oldest sailor(s)

  The first query is illegal!
(We’ll look into the
reason a bit later, when
we discuss GROUP BY.)

  The third query is
equivalent to the second
query, and is allowed in
the SQL/92 standard,
but is not supported in
some systems.

SELECT S.sname, MAX (S.age)
FROM Sailors S

SELECT S.sname, S.age
FROM Sailors S
WHERE S.age =
 (SELECT MAX (S2.age)
 FROM Sailors S2)

SELECT S.sname, S.age
FROM Sailors S
WHERE (SELECT MAX (S2.age)
 FROM Sailors S2)
 = S.age

Comp 521 – Files and Databases Fall 2010 6

Motivation for Grouping
  So far, we’ve applied aggregate operators to all

(qualifying) tuples. Sometimes, we want to apply
them to each of several tuple groups.

  Consider: Find the age of the youngest sailor for each
rating level.
  In general, we don’t know how many rating levels

exist, and what the rating values for these levels are!
  Suppose we know that rating values go from 1 to 10;

we can write 10 queries that look like this (!):
SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = i

For i = 1, 2, ... , 10:

Comp 521 – Files and Databases Fall 2010 7

Queries With GROUP BY and HAVING

  The target-list contains
(i) attribute names
(ii) terms with aggregate operations (e.g., MIN (S.age)).

  The attribute list (i) must be a subset of grouping-list.
Intuitively, each answer tuple corresponds to a group, and
these attributes must have a single value per group. (A group
is a set of tuples that have the same value for all attributes in
grouping-list.)

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

Comp 521 – Files and Databases Fall 2010 8

Conceptual Evaluation

  The cross-product of relation-list is computed, tuples
that fail qualification are discarded, unnecessary fields
are deleted, and the remaining tuples are partitioned
into groups by the value of attributes in grouping-list.

  The group-qualification is then applied to eliminate
some groups. Expressions in group-qualification must
have a single value per group!
  In effect, an attribute in group-qualification that is not an

argument of an aggregate op also appears in grouping-list.
(SQL does not exploit primary key semantics here!)

  One answer tuple is generated per qualifying group.

Comp 521 – Files and Databases Fall 2010 9

Find age of the youngest sailor with age ≥ 18,
for each rating with at least 2 such sailors

SELECT S.rating, MIN (S.age)
 AS minage

FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

Answer relation:

Sailors instance:

Comp 521 – Files and Databases Fall 2010 10

Find age of the youngest sailor with age ≥ 18,
for each rating with at least 2 such sailors

Comp 521 – Files and Databases Fall 2010 11

Find age of the youngest sailor with age ≥ 18, for each
rating with at least 2 such sailors and with every sailor
under 60.

HAVING COUNT (*) > 1 AND EVERY (S.age <=60)

What is the result of
changing EVERY to
ANY?

Comp 521 – Files and Databases Fall 2010 12

Find age of the youngest sailor with age ≥ 18, for
each rating with at least 2 sailors between 18 and 60.

SELECT S.rating, MIN (S.age)
 AS minage

FROM Sailors S
WHERE S.age >= 18 AND S.age <= 60
GROUP BY S.rating
HAVING COUNT (*) > 1

Answer relation:

Sailors instance:

Comp 521 – Files and Databases Fall 2010 13

For each red boat, find the number of
reservations for this boat

  Grouping over a join of three relations.
  What do we get if we remove B.color=‘red’

from the WHERE clause and add a HAVING
clause with this condition?

  What if we drop Sailors and the condition
involving S.sid?

SELECT B.bid, COUNT (*) AS scount
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’
GROUP BY B.bid

Comp 521 – Files and Databases Fall 2010 14

Find age of the youngest sailor with age > 18,
for each rating with at least 2 sailors (of any age)

  Shows HAVING clause can also contain a subquery.
  Compare this with the query where we considered

only ratings with 2 sailors over 18!
  What if HAVING clause is replaced by:

  HAVING COUNT(*) >1

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age > 18
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (*)
 FROM Sailors S2
 WHERE S.rating=S2.rating)

Comp 521 – Files and Databases Fall 2010 15

Find those ratings for which the average
age is the minimum over all ratings

  Aggregate operations cannot be nested! WRONG:
SELECT S.rating
FROM Sailors S
WHERE S.age = (SELECT MIN (AVG (S2.age)) FROM Sailors S2)

SELECT Temp.rating, Temp.avgage
FROM (SELECT S.rating, AVG (S.age) AS avgage
 FROM Sailors S
 GROUP BY S.rating) AS Temp
WHERE Temp.avgage = (SELECT MIN (Temp.avgage)
 FROM Temp)

  Correct solution (in SQL/92):

Comp 521 – Files and Databases Fall 2010 16

Null Values
  Field values in a tuple are sometimes unknown

(e.g., a rating has not been assigned) or inapplicable
(e.g., no spouse’s name).
  SQL provides a special value null for such situations.

  The presence of null complicates many issues. E.g.:
  Special operators needed to check if value is/is not null.
  Is rating>8 true or false when rating is equal to null? What about

AND, OR and NOT connectives?
  We need a 3-valued logic (true, false and unknown).
  Meaning of constructs must be defined carefully. (e.g., WHERE

clause eliminates rows that don’t evaluate to true.)
  New operators (in particular, outer joins) possible/needed.

Comp 521 – Files and Databases Fall 2010 17

Integrity Constraints (Review)
  An IC describes conditions that every legal instance

of a relation must satisfy.
  Inserts/deletes/updates that violate IC’s are disallowed.
  Can be used to ensure application semantics (e.g., sid is a

key), or prevent inconsistencies (e.g., sname has to be a
string, age must be < 200)

  Types of IC’s: Domain constraints, primary key
constraints, foreign key constraints, general
constraints.
  Domain constraints: Field values must be of right type.

Always enforced.

Comp 521 – Files and Databases Fall 2010 18

General Constraints

  Useful when
more general
ICs than keys
are involved.

  Can use queries
to express
constraint.

  Constraints can
be named.

CREATE TABLE Sailors(
 sid INTEGER,
 sname CHAR(10),
 rating INTEGER,
 age REAL,
 PRIMARY KEY (sid),
 CHECK (rating >= 1
 AND rating <= 10)

Comp 521 – Files and Databases Fall 2010 19

General Constraints

  Useful when
more general
ICs than keys
are involved.

  Can use queries
to express
constraint.

  Constraints can
be named.

CREATE TABLE Reserves(
 sname CHAR(10),
 bid INTEGER,
 day DATE,
 PRIMARY KEY (bid,day),
 CONSTRAINT noInterlakeRes
 CHECK (`Interlake’ <>
 (SELECT B.bname
 FROM Boats B
 WHERE B.bid=bid)))

Comp 521 – Files and Databases Fall 2010 20

Constraints Over Multiple Relations

  Awkward and
wrong!

  If Sailors is
empty, the
number of Boats
tuples can be
anything!

  ASSERTION is the
right solution;
not associated
with either table.

CREATE TABLE Sailors(
 sid INTEGER,

 sname CHAR(10),
 rating INTEGER,
 age REAL,
 PRIMARY KEY (sid),
 CHECK
 ((SELECT COUNT (S.sid) FROM Sailors S)
 + (SELECT COUNT (B.bid) FROM Boats B) < 100)

CREATE ASSERTION smallClub
CHECK
((SELECT COUNT (S.sid) FROM Sailors S)
+ (SELECT COUNT (B.bid) FROM Boats B) < 100)

Number of boats
plus number of
sailors is < 100

Comp 521 – Files and Databases Fall 2010 21

Triggers

  Trigger: procedure that starts automatically if
specified changes occur to the DBMS

  Triggers have three parts:
  Event (activates the trigger)
  Condition (tests whether the triggers should run)
  Action (what happens if the trigger runs)

Comp 521 – Files and Databases Fall 2010 22

Triggers: Example
  Suppose there was a rule than no one with a rating less

than five can reserve a green boat. The following trigger
would enforce this rule:

CREATE TRIGGER RatingRuleForGreen
BEFORE INSERT ON Reserves
BEGIN
 SELECT RAISE(FAIL, 'Sailor is not qualified’)
 WHERE EXISTS (SELECT * FROM Sailors, Boats
 WHERE sid = new.sid AND rating < 5
 AND bid = new.bid AND color = 'green');
END;

  Note the special variable “new” for accessing parameters of
the original INSERT query

Comp 521 – Files and Databases Fall 2010 23

Triggers: Another Example
  Queries of one table can be made to have

side-effects in other tables via triggers
  Example “Event Logging”
  We know dates of reservations, but not when

they were made. This can be remedied using
a trigger as follows:
CREATE TRIGGER insertLog AFTER INSERT ON Reserves
BEGIN
 UPDATE log
 SET timeEntered = DATETIME('NOW'),
 sid = new.sid, bid = new.bid, date = new.date
 WHERE rowid = new.rowid;
END;

Comp 521 – Files and Databases Fall 2010 24

Summary

  SQL was an important factor in the early acceptance
of the relational model; more natural than earlier,
procedural query languages.

  Relationally complete; in fact, significantly more
expressive power than relational algebra.

  Even queries that can be expressed in RA can often
be expressed more naturally in SQL.

  Many alternative ways to write a query; optimizer
should look for most efficient evaluation plan.
  In practice, users need to be aware of how queries are

optimized and evaluated for best results.

Comp 521 – Files and Databases Fall 2010 25

Summary (Contd.)

  NULL for unknown field values brings many
complications

  SQL allows specification of rich integrity
constraints

  Triggers respond to changes in the database

