

Relational Calculus

Chapter 4.3-4.5

- Comes in two flavors: <u>Tuple relational calculus</u> (TRC) and <u>Domain relational calculus</u> (DRC).
- Calculus has variables, constants, comparison ops, logical connectives and quantifiers.
 - <u>TRC</u>: Variables range over (i.e., get bound to) *tuples*.
 - <u>DRC</u>: Variables range over *domain elements* (= field values).
 - Both TRC and DRC are simple subsets of first-order logic.
- Expressions in the calculus are called *formulas with unbound formal variables*. An answer tuple is essentially an assignment of constants to these variables that make the formula evaluate to *true*.

- TRC and DRC are semantically similar
- In TRC, tuples share an equal status as variables, and field referencing can be used to select tuple parts
- In DRC, formal variables are explicit
- In the book you will find extensive discussions and examples of TRC Queries (Sections 4.3.1) and a lesser treatment of DRC.
- To even things out, in this lecture I will focus on DRC examples

Domain Relational Calculus

* *Query* has the form: $\left\{ \langle x1, x2, ..., xn \rangle \mid p(\langle x1, x2, ..., xn \rangle) \right\}$

- * *Answer* includes all tuples $\langle x1, x2, ..., xn \rangle$ that make the *formula* $p[\langle x1, x2, ..., xn \rangle]$ be *true*.
- * Formula is recursively defined, starting with simple atomic formulas (getting tuples from relations or making comparisons of values), and building bigger and better formulas using the logical connectives.

✤ Atomic formula:

- $\langle x1, x2, ..., xn \rangle \in Rname$, or X op Y, or X op constant op is one of $\langle , \rangle, =, \leq, \geq, \neq$ $\exists X(p(X)) \text{ is read as "there}$

✤ Formula:

an atomic formula, or

 $\exists X(p(X))$ is read as "there exists" a setting of the variable X such that p(X) is true". $\forall X(p(X))$ is read as "for all values of X, p(X)is true"

- $\neg p, p \land q, p \lor q$, where p and q are formulas, or
- $\exists X(p(X))$, where variable X is *free* in p(X), or
- $\forall X(p(X))$, where variable X is *free* in p(X)

- ★ The use of quantifiers $\exists X$ and $\forall X$ in a formula is said to <u>bind</u> X.
 - A variable that is not bound is <u>free</u>.
- Let us revisit the definition of a query:

$$\left\{\left\langle x1, x2, ..., xn\right\rangle \mid p\left(\left\langle x1, x2, ..., xn\right\rangle \right)\right\}$$

There is an important restriction: the variables x1, ..., xn that appear to the left of ' |' must be the *only* free variables in the formula p(...).

Examples

Recall the example relations from last lecture

Sailors:

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Reservations:

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

Boats:

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

$\left\{\left\langle I, N, T, A \right\rangle | \left\langle I, N, T, A \right\rangle \in Sailors \land T > 7 \right\}$

- ◆ The condition $\langle I, N, T, A \rangle \in Sailors$ ensures that the domain variables *I*, *N*, *T* and *A* are bound to fields of the same Sailors tuple.
- ★ The term $\langle I, N, T, A \rangle$ to the left of `|' (which should be read as *such that*) says that every tuple $\langle I, N, T, A \rangle$ that satisfies *T* > 7 is in the answer.
- Modify this query to answer:
 - Find sailors who are older than 18 or have a rating under 9, and are called 'Joe'.

✤ Find all sailors with ratings above 7 $\{S | S \in Sailors \land S.rating > 7\}$

* Note, here *S* is a tuple variable

 $\{X | S \in Sailors(S.rating > 7 \land X.name = S.sname \land X.age = S.age)\}$

Here X is a tuple with 2 fields (name, age).
 This query implicitly specifies projection (π) and renaming (ρ) relational algebra operators

$$\langle I, N, T, A \rangle | \langle I, N, T, A \rangle \in Sailors \land T > 7 \land$$

$$\exists Ir, Br, D (\langle Ir, Br, D \rangle \in Reserves \land Ir = I \land Br = 103)$$

- * We have used $\exists Ir, Br, D(...)$ as a shorthand for $\exists Ir(\exists Br(\exists D(...)))$
- ♦ Note the use of ∃ to find a tuple in Reserves that 'joins with' (⋈) the Sailors tuple under consideration.

Find sailors rated > 7 who've reserved a red boat

$$\{ \langle I, N, T, A \rangle | \langle I, N, T, A \rangle \in Sailors \land T > 7 \land \\ \exists Ir, Br, D \left(\langle Ir, Br, D \rangle \in Reserves \land Ir = I \land \\ \exists B, BN, C \left(\langle B, BN, C \rangle \in Boats \land B = Br \land C = 'red' \right) \}$$

- Observe how the parentheses control the scope of each quantifier's binding.
- This may look cumbersome, but with a good user interface, it is very intuitive. (MS Access, QBE)

Names of all Sailors who have reserved boat 103

$$\left\{ \left\langle N \right\rangle \middle| \exists I, T, A \left(\left\langle I, N, T, A \right\rangle \in Sailor \right) \\ \land \exists Ir, Br, D \left(\left\langle Ir, Br, D \right\rangle \in Reserves \land Ir = I \land Br = 103 \right\} \right\}$$

- Note that only the *sname* field is retained in the answer and that only N is a free variable.
- A more compact version

$$\left\{ \left\langle N \right\rangle \middle| \exists I, T, A \left(\left\langle I, N, T, A \right\rangle \in Sailor \right) \\ \land \exists D \left(\left\langle I, 103, D \right\rangle \in Reserves \right) \right\} \right\}$$

Sailors who've reserved all boats

- Recall how queries of this type used of the "division" operator in relational algebra
- The trick is that we use "forall" quantification (∀) in place of "there exists" quantification (∃)
- Domains of variables are determined when they are bound
- Think of it as considering each variable's "domain" of independently in our substitution
 Comp 521 Files and Databases

bid	bname	color
101	Interlake	blue
101	Interlake	red
101	Interlake	green
101	Clipper	blue
101	Clipper	red
101	Clipper	green
101	Marine	blue
101	Marine	red
101	Marine	green
102	Interlake	blue
	•	
104	Marine	green
104	marine	red

$$\begin{array}{l} \langle I,N,T,A \rangle | \langle I,N,T,A \rangle \in Sailors \land \\ \forall B,BN,C \left(\neg \left(\langle B,BN,C \rangle \in Boats \right) \lor \\ \left(\exists Ir,Br,D \left(\langle Ir,Br,D \rangle \in Reserves \land I = Ir \land Br = B \right) \right) \end{array} \right)$$

Find all sailors I such that for each 3-tuple (B,BN,C) either it is not a tuple in Boats or there is a tuple in Reserves showing that sailor I has reserved it.

Find sailors who've reserved all boats (again!)

$$\begin{array}{l} \langle I, N, T, A \rangle | \langle I, N, T, A \rangle \in Sailors \land \\ \forall \langle B, BN, C \rangle \in Boats \\ (\exists \langle Ir, Br, D \rangle \in \operatorname{Reserves}(I = Ir \land Br = B)) \end{array}$$

Simpler notation, same query. (Much clearer!)
To find sailors who've reserved all red boats:

...
$$(C \neq 'red' \lor \exists \langle Ir, Br, D \rangle \in \operatorname{Reserves}(I = Ir \land Br = B))]$$

It is possible to write syntactically correct calculus queries that have an infinite number of answers! Such queries are called <u>unsafe</u>.

• e.g.,
$$\left\{ < I, N, T, A > \left| < I, N, T, A > \notin Sailors \right\} \right\}$$

- It is known that every query that can be expressed in relational algebra can be expressed as a safe query in DRC / TRC; the converse is also true.
- Relational Completeness: Query language (e.g., SQL) can express every query that is expressible in relational algebra/calculus.

- Relational calculus is non-operational, and users define queries in terms of what they want, not in terms of how to compute it. (Declarativeness.)
- Algebra and safe calculus have same expressive power, leading to the notion of relational completeness.