

Relational Algebra

Study Chapter 4.1-4.2

Relational Query Languages

- Query languages: Allow manipulation and retrieval of data from a database.
- Relational model supports simple, powerful QLs:
 - Strong formal foundation based on logic.
 - Allows for much optimization.
- Query Languages != programming languages!
 - QLs not expected to be "Turing complete".
 - QLs not intended to be used for complex calculations.
 - QLs support easy, efficient access to large data sets.

Formal Relational Query Languages

- * Two formal Query Languages are the basis for "real" query languages (e.g. SQL):
 - Relational Algebra: Operational, it provides a recipe for evaluating the query. Useful for representing execution plans.
 - Relational Calculus: Lets users describe what they want, rather than how to compute it. (Nonoperational, <u>declarative</u>.)

Preliminaries

- * A query is applied to *relation instances*, and the result of a query is also a relation instance.
 - Schemas of input relations for a query are fixed (but queries are meaningful regardless of instance!)
 - The schema for the *result* of a given query is also fixed! Determined by definition of query language constructs.
- Positional vs. named-field notation:
 - Positional notation (i.e. R[0]) easier for formalism, named-field notation (i.e. R.name) more readable.
 - Both available in SQL

What is an "Algebra"

- Set of operands and operations that they are "closed" under all compositions
- Examples
 - Boolean algebra operands are the logical values
 True and False, and operations include AND(), OR(), NOT(), etc.
 - Integer algebra operands are the set of integers, operands include ADD(), SUB(), MUL(), NEG(), etc. many of which have special in-fix operator symbols (+,-,*,-)
- In our case "operands" are relations, what are the operators?

Example Instances

- "Sailors" and "Reserves" relations for our examples.
- We'll use positional or named field notation, assume that names of fields in query results are "inherited" from names of fields in query input relations.

R1

<u>sid</u>	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

*S*1

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

*S*2

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Relational Algebra

Basic operations:

- Selection (σ) Selects a subset of rows from relation.
- <u>Projection</u> (π) Deletes unwanted columns from relation.
- Cross-product (X) Allows us to combine two relations.
- *Set-difference* (—) Tuples in reln. 1, but not in reln. 2.
- *Union* (U) Tuples in reln. 1 and in reln. 2.

Additional operations:

- Intersection, *join*, division, renaming: Not essential, but (very!) useful.
- Since each operation returns a relation, operations can be composed! (Algebra is "closed".)

Projection

- Deletes attributes that are not in projection list.
- * Schema of result contains exactly the fields in the projection list, with the same names that they had in the (only) input relation.
- Projection operator has to eliminate *duplicates*! (Why??)
 - Note: real systems typically don't do duplicate elimination unless the user explicitly asks for it. (Why not?)

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

 $\pi_{sname,rating}(S2)$

age
$$35.0$$

$$55.5$$

$$\tau_{age}(S2)$$

Selection

- Selects rows that satisfy selection condition.
- No duplicates in result! (Why?)
- Schema of result
 identical to schema of
 (only) input relation.
- * Result relation can be the *input* for another relational algebra operation! (Operator composition.)

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

 $\sigma_{rating>8}(S2)$

sname	rating
yuppy	9
rusty	10

$$\pi_{sname,rating}(\sigma_{rating>8}(S2))$$

Union, Intersection, Set-Difference

- * All of these operations take two input relations, which must be <u>union-compatible</u>:
 - Same number of fields.
 - 'Corresponding' fields have the same type.
- * What is the *schema* of result?

sid	sname	rating	age
22	dustin	7	45.0

S1-S2

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
44	guppy	5	35.0
28	yuppy	9	35.0

 $S1 \cup S2$

sid	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0

 $S1 \cap S2$

Cross-Product

- Each row of S1 is paired with each row of R1.
- * Result schema has one field per field of S1 and R1, with field names `inherited' if possible.
 - *Conflict*: Both S1 and R1 have a field called *sid*.

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	10/10/96
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	22	101	10/10/96
31	lubber	8	55.5	58	103	11/12/96
58	rusty	10	35.0	22	101	10/10/96
58	rusty	10	35.0	58	103	11/12/96

• Renaming operator: ρ ($C(1 \rightarrow sid1, 5 \rightarrow sid2), S1 \times R1$)

Joins

* Condition Join: $R \bowtie_{c} S = \sigma_{c}(R \times S)$

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	58	103	11/12/96

$$S1 \bowtie_{S1.sid < R1.sid} R1$$

- * Result schema same as that of cross-product.
- Fewer tuples than cross-product, might be able to compute more efficiently
- Sometimes called a theta-join.

Joins

* <u>Equi-Join</u>: A special case of condition join where the condition *c* contains only *equalities*.

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	10/10/96
58	rusty	10	35.0	103	11/12/96

$$S1 \bowtie_{sid} R1$$

- * Result schema similar to cross-product, but only one copy of fields for which equality is specified.
- * *Natural Join*: Equijoin on *all* common fields.

Division

Not supported as a primitive operator, but useful for expressing queries like:

Find sailors who have reserved <u>all</u> boats.

- \bullet Let A have 2 fields, x and y; B have only field y:
 - $A/B = \{\langle x \rangle | \exists \langle x, y \rangle \in A \ \forall \langle y \rangle \in B\}$
 - i.e., *A/B* contains all *x* tuples (sailors) such that for *every y* tuple (boat) in *B*, there is an *xy* tuple in *A*.
 - *Or*: If the set of *y* values (boats) associated with an *x* value (sailor) in *A* contains all *y* values in *B*, the *x* value is in *A/B*.
- ❖ In general, x and y can be any lists of fields; y is the list of fields in B, and $x \cup y$ is the list of fields of A.

Examples of Division A/B

sno	pno
s1	p1
s1	p2
s1	р3
s1	p4
s2	p1
s2	p2
s3	p2
s4	p2
s4	p4

A

pno
p2

*B*1

sno
s1
s2
s3
s4

A/B1

pno	
p2	
p4	
DΩ	

*B*2

*A/*B2

pno
p1
p2
p4

B3

sno s1

A/B3

- Division is not essential op; just a useful shorthand.
 - (Also true of joins, but joins are so common that systems implement joins specially.)
- ❖ *Idea*: For *A/B*, compute all *x* values that are not "disqualified" by some *y* value in *B*.
 - *x* value is *disqualified* if by attaching *y* value from *B*, we obtain an *xy* tuple that is not in *A*.

Disqualified x values:
$$\pi_{\chi}((\pi_{\chi}(A) \times B) - A)$$

A/B:
$$\pi_{\chi}(A)$$
 – all disqualified tuples

Relational Algebra Examples

- Assume the following extended schema:
 - Sailors(sid: integer, sname: string, rating: integer, age: real)
 - Reserves(sid: integer, bid: integer, day: date)
 - Boat(bid: integer, bname: string, bcolor: string)
- Objective: Write a relational algebra expression whose result instance satisfies the specified conditions
 - May not be unique
 - Some alternatives might be more efficient (in terms of time and/or space)

Names of sailors who've reserved boat #103

* Solution 1: $\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \bowtie Sailors)$

* Solution 2: ρ (Templ, $\sigma_{bid=103}$ Reserves)

 ρ (Temp2, Temp1 \bowtie Sailors)

 π_{sname} (Temp2)

♦ Solution 3: $\pi_{sname}(\sigma_{bid=103}(\text{Reserves} \bowtie Sailors))$

Names of sailors who've reserved a red boat

Information about boat color only available in Boats; so need an extra join:

$$\pi_{sname}((\sigma_{color='red'}Boats) \bowtie Reserves \bowtie Sailors)$$

* A more efficient solution:

$$\pi_{sname}(\pi_{sid}((\pi_{bid}\sigma_{color='red'}Boats)\bowtie Res)\bowtie Sailors)$$

A query optimizer can find this, given the first solution!

Sailors who've reserved a red or a green boat

Can identify all red or green boats, then find sailors who've reserved one of these boats:

$$\rho \ (\textit{Tempboats}, (\sigma_{color = 'red' \ \lor \ color = 'green'} \ \textit{Boats}))$$

 π_{sname} (Tempboats \bowtie Reserves \bowtie Sailors)

- Can also define Tempboats using union! (How?)
- * What happens if V is replaced by A in this query?

Sailors who've reserved a red and a green boat

* Previous approach won't work! Must identify sailors who've reserved red boats, sailors who've reserved green boats, then find the intersection (note that *sid* is a key for Sailors):

$$\rho \ (Tempred, \pi_{sid}((\sigma_{color='red'} Boats) \bowtie Reserves))$$

$$\rho \; (\textit{Tempgreen} \; \pi_{\textit{sid}}((\sigma_{\textit{color} \, = \, \textit{green}} \; \textit{Boats}) \bowtie \mathsf{Reserves}))$$

$$\pi_{sname}((Tempred \cap Tempgreen) \bowtie Sailors)$$

Names of sailors who've reserved all boats

Uses division; schemas of the input relations to / must be carefully chosen:

$$\rho \ (Tempsids, (\pi_{sid,bid} Reserves) / (\pi_{bid} Boats))$$
 $\pi_{sname} (Tempsids \bowtie Sailors)$

* To find sailors who've reserved all 'Interlake' boats:

....
$$/\pi_{bid}(\sigma_{bname=Interlake}^{\prime}Boats)$$

Summary

- The relational model has rigorously defined query languages that are simple and powerful.
- Relational algebra is more operational; useful as internal representation for query evaluation plans.
- * Several ways of expressing a given query; a query optimizer should choose the most efficient version.