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Problem 1.  “Compiler Appreciation”

There are many solutions to these problems. My solutions use as few stores and loads as possible, primarily to 
keep the code simple.

a)

b) I’m assuming that i is an array offset, and not already adjusted for word alignment.

c)



d) Since there is no guarantee that the loop will execute even one time, i must be checked before executing any 
loop code.

e)  Since the loop will always run the first time, my code enters the loop with i equal to 0. Upon entering the loop 
structure, i is immediately incremented. For this reason, the loop runs from 1 to 9, since after the eighth time it 
will return to the top of the loop and begin the ninth and final run.

f) Note that this is a fairly complicated address redirection. For the purpose of this class, we will be assuming 
that the array is filled with indices and not memory pointers.



Problem 2. “MIPS Calisthenics”

a) 

b) 

c)

d)

Problem 3.

a) The return address is saved in $sp-8, the argument “n” is saved in $sp-4, and the value returned from the first 
call to fib (with n-1) is saved in $sp. All of these values must be saved; the return address must be saved because 
the function is not a leaf. The “n” argument must be saved because it is needed to construct the parameter for the 
second call to fib (with n-2). The value returned from the first fib call must be saved as well, so that it is 
available after the second call.

b) It would not work. If you saved the value returned from the first call to fib in a scratch register (like $a1 in 
this case). Subsequent, calls by non-leaf children would overwrite it, thus making it unavailable upon return.



c)

d) The iterative version is a leaf routine, and all variables can be allocated in registers, thus, no stack space is 
needed and it requires less memory. The assembly language implementation is also shorter, and faster since a 
Fibonacci number is only computed once, whereas the same Fibonacci numbers are computed several times in 
the recursive version. For example:

fib(5) = fib(4)+fib(3) 
fib(5) = (fib(3)+fib(2))+(fib(2)+fib(1)) 
fib(5) = ((fib(2)+fib(1))+(fib(1)+fib(0))+((fib(1)+fib(0))+fib(1)) 
fib(5) = ((((fib(1)+fib(0))+ fib(1))+(fib(1)+fib(0)) + ((fib(1)+fib(0))+fib(1))

Note that fib(3) is computed twice, and fib(2) is computed 3 times. This redundancy only gets worse as n grows 
(it grows proportional to n2). Therefore, the iterative version is faster than the recursive one. Perhaps the 
iterative version is slightly easier to understand. There is some subtly in the iterative code— for example, the 
need for the t variable to manage the updating of the n-1 and n-2 Fibonacci numbers.

e) The trick here is to first find some stack frame for an instance of fib(). Each stack frame is composed of three 
words, the first word being the return address and the second word being the argument passed in. Notice that 
successive calls to fib() are with arguments one or two less than the caller’s. If we look into this stack dump, we 
can see a 3-word pattern starting at location 0x7fffefe0. We can surmise that the contents of 0x7fffefe0 are the 
return address of the first self-call of fib (with argument n-1). From this we can figure out that the function fib() 
must be located at 0x00400024 (0x00400048 – 4*9).

f) The argument of the original call was 7. One indication that this is the initiating call is that the return address 
0x0040007c is outside of the fib() routine.

g) This is a tricky question. If you examine the stack carefully, it appears that most stack frames do not have 
their 3rd element initialized. By examining the code, one can see that immediately upon return from the first 
self-call (fib(n-1)), the returned value ($v0) is stored on the stack, as is evident from the 1 stored in stack 
location 0x7fffef9c. You can also see that the return address of the next call is different from those previous, 
which indicates that the second call to fib(n-2) has already taken place. This call would be the second call of a 
callee whose argument was 2 (from stack location 0x7fffefa0), thus, fib is called with 2-2 = 0, and this 0 has not 
yet been stored onto the stack. Thus, the stack dump must have occurred in a call with fib(0) after the instruction 
with label L1.

h) The deepest stack recursion is determined argument. If fib is called with n, then a stack frame will be 
allocated for fib calls with arguments n-1 and n-2. Fib is called again until n is either 1 or 0. The second call to 



fib (n-2) reuses the same memory used by the first call (n-1). Thus, the depth of the stack is equal to 3 times the 
argument, in this case 21 locations. So the lowest memory location allocated on the stack in this location is 
0x7fffef90. However, in the final call of fib, the third stack entry is never used, thus the lowest memory location 
referenced is 0x7fffef94.


