
SEME: A Fast Mapper of Illumina Sequencing Reads
with Statistical Evaluation

Shijian Chen1,�, Anqi Wang1,�, and Lei M. Li1,2,��

1 NCMIS, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing, 100190

2 Molecular and Computational Biology Program, Department of Biological Sciences,
University of Southern California, Los Angeles, CA 90089

lilei@amss.ac.cn

Abstract. Mapping reads to a reference genome is a routine yet computationally
intensive task in research based on high-throughput sequencing. In recent years,
the sequencing reads of the Illumina platform get longer and their quality scores
get higher. According to our calculation, this allows perfect k-mer seed match
for almost all reads when a close reference genome is available subject to rea-
sonable specificity. Our another observation is that the majority reads contain at
most one short INDEL polymorphism. Based on these observations, we propose
a fast mapping approach, referred to as “SEME”, which has two core steps: first
it scans a read sequentially in a specific order for a k-mer exact match seed; next
it extends the alignment on both sides allowing at most one short-INDEL each,
using a novel method “auto-match function”. We decompose the evaluation of the
sensitivity and specificity into two parts corresponding to the seed and extension
step, and the composite result provides an approximate overall reliability estimate
of each mapping. We compare SEME with some existing mapping methods on
several data sets, and SEME shows better performance in terms of both running
time and mapping rates.

Keywords: high-throughput sequencing, mapping, perfect match, INDEL, auto-
match function.

1 Introduction

The Next Generation Sequencing (NGS) technologies are generating unprecedented
large amounts of short reads in routine genome research. The high-throughput and read
length of NGS make it especially suitable for re-sequencing individuals with known
references and thus for detecting variations. In whole genome re-sequencing projects
for mammals, NGS usually generates billions of short reads, and mapping these reads
back to the reference genome is computationally intensive. Hence the design of efficient
mapping algorithms is a key and challenging problem in current computational biology.

Many short-read mapping methods have been developed along the evolution of the
sequencing technologies[1]. The specific read length, error rates and patterns of each

� These authors contribute equally.
�� corresponding author.

M. Deng et al. (Eds.): RECOMB 2013, LNBI 7821, pp. 14–29, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

SEME: A Fast Mapper of Illumina Sequencing Reads with Statistical Evaluation 15

technology at the time are the primary constraints in the design of mapping algorithms.
In the early days of NGS, the short reads were only 35bp long and error rates were fairly
high for the Illumina/Solexa platform. Besides, 5-6 years ago the 32-bit architecture
was the main model for PCs or cluster nodes, and their memory size is limited to 4Gb.
Bowtie[2] applied the Burrows-Wheeler transform and FM index to the representation
of the reference, and could reduce the memory footprint to as low as 1.3Gb for the
human genome. This advantage makes Bowtie very popular among high-throughput
sequencing users. Although the Burrows-Wheeler transform is effective in searching
perfect matches of a k-mer in a reference, we have to allow mismatches to maintain
sensitivity. For instance, MAQ[3] and SeqMap[4] use spaced seeds which allow up to k
mismatches. Bowtie conducts a backtracking search to allow mismatches, and mitigates
excessive backtracking by “double indexing”, which doubles the memory foot print.
No matter what method is used for handling mismatches, complexity is substantially
increased.

As chemistry and instruments of NGS are under constant improvement, the reads
are getting longer with higher quality. Now the Illumina platform can generate reads
longer than 100bp with fairly high quality. MiSeq[5] can even sequence reads up to
250bp. Some short read mapping programmes, like Bowtie2, have been developed for
these longer reads. Bowtie2 maps multiple evenly distributed seeds of a read and uses
dynamic programming to extend seed alignments into a full alignment that allows IN-
DELs. We observed that INDEL errors are extremely rare compared to substitution
errors for Illumina systems. Thus if an INDEL occurs in the alignment or mapping,
most likely it is a result from a polymorphism between the read and the reference.

Most high-throughput sequencing applications are for conserved genomes such as
human, which is the focus of this article. In [6], it is found that the size of INDEL obeys
a power law distribution in Human and Rodent pseudo genes: 78 human pseudo genes
have been analyzed and it shows that the average length of small INDEL is less than
three; furthermore, among those INDELs with length no larger than 20bp, 95% of them
are no larger than 11bp. In[7], it is found that INDELs locate throughout the genome
at a frequency of one per 7.2kb on average. If we approximate the occurrences of short
INDELs by a Poisson point process that matches the frequency [12], the probability of
finding at most one INDEL in a 100bp window is greater than 0.9999. Most existing
methods apply dynamic programming to allow general INDELs. This is unnecessary
most of the time for mapping short reads when a close reference genome is available.

Partially motivated by the above considerations, in this article we propose a new
short read mapping method, referred to as SEME (Sequential Exact seed-Match and
Extend) hereafter, which focuses on mapping Illumina short reads generated from con-
served genomes. Different from most existing Seed-and-Extend methods which map
multiple seeds simultaneously, SEME scans the read according to a specific strategy
and maps the seeds sequentially. Once a seed is perfectly matched to the reference we
extend it on both sides to get the full alignment result or reject it. This approach avoids
mapping a fixed number of seeds for each short read. The higher the sequencing quality
is, the less number of seeds are needed in SEME on average. This feature is particu-
larly favorable as sequencing technology improves. In the extension step, we introduce
the AMF (Auto-Match-Function) method to detect up to two INDELs. Compared with

16 S. Chen, A. Wang, and L.M. Li

alignment algorithms based on dynamic programming, the average complexity of the
AMF method is linear. For the remaining complicated occasions, which are rare, we
can incorporate the Smith-Waterman[8] algorithm for full alignments.

As important as the computational complexity of an algorithm, its mapping rate and
accuracy, which is usually measured by sensitivity and specificity, needs to be statisti-
cally evaluated fairly. For example, BLAST[9] is now widely used in the search of se-
quence databases. Its success comes from both its efficient algorithmic implementation
and the associated statistical evaluation of the alignment significance[10,11,12]. In the
situation of mapping short reads, the read length, say 100bp, is so small compared to the
the genome size, that the classical asymptotics of alignment cannot be applied directly.
In this report we make some efforts to evaluate the accuracy of the SEME procedure.
In concert with the algorithm, we start off by comparing two sequences of the same
read length. If one sequence is different from the other by only substitution and small
INDEL polymorphisms plus sequencing errors, then the chance of detecting matching
is essentially sensitivity. On the other hand, if one sequence is sampled randomly, say
according to an i.i.d. – independent and identically distributed – model for the sake of
simplicity, then accepting a match leads to a false positive error and its chance needs
to be calculated. To evaluate the overall specificity, we decompose the entire genome
into many reads of the same read lengths, either overlapping or non-overlapping, and
apply the above result to provide bounds to the probability of accepting at least one
match by chance across the genome. We could complement the analysis based on the
simple model by simulation as well. With such a probabilistic framework that takes into
account of read length, read error pattern, and polymorphism rate, we can optimize the
seed length by trading off sensitivity and specificity.

To enhance sensitivity, we propose a soft counting criterion for accepting or rejecting
a mapping result if appropriate sequencing quality scores are available. That is, we
impute “possible polymorphism” fractions from mismatches based on polymorphism
rates and quality values, and use the sum of these fractions for decision.

2 Method

SEME follows a “seed-and-extend” paradigm. In the first stage, it extracts k-mers se-
quentially from a short read, and for each k-mer SEME searches through the reference
for perfect-match locations, where the read can anchor. We will discuss the selection of
k later. In the second stage, SEME extends the seed on both sides separately. If the read
is indeed from a reference location, then their true alignment falls into three categories:
no INDEL; one INDEL; other more complicated INDEL patterns. As we explained ear-
lier, most short reads from a conserved genome contain no more than one INDEL and
possibly some mismatches. Thus the principal task of extension can be simplified as
follows: on each side of the seed, detect the possible “one-INDEL” including its type,
position and length (no larger than a given upper bound). We introduce the auto-match
vector and auto-match function to efficiently solve this problem.

The search of k-mer exact-match across a reference genome is a common theme in
most mapping tools. Several options are available for implementation. If memory size

SEME: A Fast Mapper of Illumina Sequencing Reads with Statistical Evaluation 17

is limited, then the Burrows-Wheeler Transform is a good choice for compressing the
genome and index information. If memory is sufficiently large, then hashing can help
speed up the search, [19].

2.1 Index Table of Sorted 32-Mers and Binary Search

In our scheme, we may use more than one kind of seed sizes depending on the data.
Therefore we propose to use the index table of 32-mers for the human genome. That
is, we encode each 32-mer subsequence of the reference genome by an integer si, i =
1, · · · , L, where L is the genome size, and sort them by the heap sorting algorithm.
Denoted the sorted 32-mer-integers by s(1) ≤ s(2) ≤ s(i) ≤ s(L), and their corresponding
addresses on the genome by a(s(i)), i = 1, · · · , L. We keep the addresses of these sorted
32-mers in an array u[i] = a(s(i)), i = 1, · · · , L, referred to as ”index table” hereafter. We
also put the reference genome in RAM so that we can quickly find the i-th sorted k-mer
by linking the i-th address in the index table with the genome, see Fig 1. Note we do
not save the sorted 32-mer-integers in a vector directly because an 32-mer takes 8 bytes
while the address of the 32-mer takes only 4 bytes. With such an index structure, we
apply binary search, whose time complexity is O(log2L). Take the human genome for
example, as the size of the index table is about three billion, approximately 30 steps are
needed to insert a k-mer into the index table.

Reference sequence

S1

S2

S3

S4

S5

S6

S7

7

Sorted: S(i) Index: u[i]

3

5

2

1

4

6

i

1

2

3

4

5

6

7

Stored in RAM

Fig. 1. Illustration of the index table. The blue bar is the reference sequence. The short bars on
top of the reference represent 32-mers s(i) extracted from the reference. The sorted 32-mers {s(i)}
and their corresponding indices u[i] are listed in the table below. Only the reference genome and
{u[i]} are kept in RAM.

18 S. Chen, A. Wang, and L.M. Li

We make a note here. Regardless the value of k, we can carry out a search of the 32-
mer starting at the same position as the k-mer. Along the binary search, the lower bound
either stays or moves upwards while the upper bound either stays or moves downwards.
We could have two outcomes: at some point, the 32-mer hits a match with either the
lower or the upper bound; otherwise, the 32-mer matches neither of the two bounds
when they meet. In the former case, the 32-mer finds a perfect match. In the latter, we
check the maximum number of matching nucleotides between the target and the lower
bound starting from the beginning position. Similarly we check the number for the
upper bound. If this number is no smaller than k, then the k-mer has its perfect match
on the genome. In comparison, search based on hashing does not have this flexibility.

Each item in the index table is a 32-bit integer which needs 4 bytes and the reference
genome takes no more than 1Gb. They add up to no more than 13Gb. As the 64-bit
architecture is taking over in the computer business, this memory requirement is not a
serious problem. However, if we select every other 32-mer in the genome, say those
at the odd addresses, then the resulted index table would be around 6Gb, and the total
memory requirement is less than 7Gb. Of course, to be consistent with this configura-
tion, we need to search two consecutive k-mers on a short read before we jump to the
next seed. According to our simulation, this reduction of memory sacrifices very little
in terms of performance.

To reduce the steps of binary search, we could introduce “block address” or ”zip
code” for each 32-mer, which is encoded into an integer in the range [0, 432 − 1]. For a
number r < 30, we pick up the 2r integers di = i ∗ 264−r, i = 0, · · · , 2r − 1, that divide
the range uniformly, and insert each of them to the index table of the sorted 32-mers of
the human genome. Denote the two indices that are just next to di are (u[ji], u[ji + 1]),
namely, s(ji) ≤ di ≤ s(ji+1) — it is possible that s(ji) = s(ji+1). Now we keep the pointers
[ji] in an array q[i], i = 0, · · · , 2r − 1, referred to as ”block address vector” hereafter.
In the practice of mapping reads, we load q[i] together with u[i] and the genome into
computer memory. For an 32-mer-integer s, we divide it by 264−r, and the resulting
integer after rounding off gives its block index denoted by i1. Suppose q[i1] and q[i1+1]
respectively point to u[j1] and u[j2], then the two indices u[j1], u[j2 + 1] can serve as
a more delicate starting point of the lower and upper bound respectively for the binary
search of s. Since the distribution of si, i = 1, · · · , L can roughly be approximately by
a uniform distribution, we could reduce r steps of binary search on averge using this
strategy. Of course, the larger the r is, the more memory is needed. If we take r = 15,
at the cost of 128K more memory, we could reduce the the average complexity of the
binary search by half.

2.2 Seed Stage

In this stage, we use the strategy GSM (Grouped Scan and Map) to scan the short read
sequentially to find a perfectly matched seed, in other words, to anchor the short read
to a candidate position in the reference genome. Since we only index a single strand of
the reference to save memory, we scan both short reads and their reverse complements.
For the sake of simplicity, we just describe the scan scheme on one strand.

The scan function GSM puts all seeds of a short read into several groups. It scans
the first seed of each group in the first round, and the second seed in the next round.

SEME: A Fast Mapper of Illumina Sequencing Reads with Statistical Evaluation 19

Fig. 2. Illustration of the grouped scan method. The green bar shows the scope of a scan window
from which a seed is extracted. The blue bar represents a short read, on which a mismatch is
marked by a black square. If we scan the read nucleotide by nucleotide, we would go though five
failed mapping marked by red before the successful mapping marked by green occurs. If we scan
the read with jump 3, only two failed mapping occur before a success.

This process goes on till a seed is mapped or the number of trial seeds exceeds a certain
threshold. Fig. 2 is an illustration of the method. It can be seen that five seeds have to
be scanned before the perfect match seed is detected by the step-by-step scan method.
In contrast, we only need to map two seeds before the detection of a perfect match seed
using a proper grouping strategy.

The grouped scan strategy reduces the number of trial seeds in most occasions. In our
experience, if a short read is mappable(can be mapped back if all seeds are scanned)
then the number of trial seeds does not exceed a certain threshold in most cases. We
could experiment with a small portion of the read data to set this threshold. The principle
will be discussed in section 2.4.

In addition to the scan order, seed length is another important factor we should con-
sider. Later we will estimate the length interval which meets both sensitivity and speci-
ficity requirement on the basis of a probabilistic model. Seed lengths near the upper
bound of the interval give the best specificity while seed lengths near the lower bound
give the best sensitivity. If we put specificity prior to sensitivity, at each scan position
we can first map a seed at the upper bound and then map a seed at the lower bound.

2.3 Extension Stage

In this stage, we detect the pattern, length and position of a possible INDEL. The core
of the method are the notions of auto-match vector and auto-match function which we
will define as follows.

Given two DNA segments denoted by S 1 and S 2, not necessarily of the same length,
we define V(S 1, S 2) to be a vector whose i-th element is 0 if the i-th elements of S 1 and
S 2 are the same, and is 1 otherwise. The length of V(S 1, S 2) is the shorter one of S 1 and
S 2. For any string S , denote the substring of S with the first i elements removed as S {i}.

We define match vectors as: M(0) = V(S 1, S 2); M(i) = V(S 1{i}, S 2), for i > 0;
M(−i) = V(S 1, S 2{i}), for i > 0, see Fig. 3. The auto-match vector w(i) of S 1 and S 2

is defined as: the i-th element of w(i) is the minimum of the i-th element of M(0) and
M(i). Fig. 5 illustrates how w(1) is obtained from M(0) and M(1). Finally, we define

20 S. Chen, A. Wang, and L.M. Li

Fig. 3. Illustration of the auto-match vectors during extension

the auto-match function AMF(i) to be the number of 1’s in the auto-match vector w(i).
AMF(0) is simply the number of 1’s in the match vector M(0).

With the help of AMF, we can detect the pattern and length of an INDEL. Fig. 4
shows a case of a two-nucleotide deletion, in which AMF(i) is zero only for i = 2
while all other values are larger than five. We use this property to detect the pattern and
length of an INDEL. Once the type and length of an INDEL is determined, we further
use auto match vectors to detect its position. The idea is illustrated in Fig. 5, where we

Reference

Short read

(0)M

(1)w

(2)w

A C T C G C T G C C A A G T A T G A C G A T C T A

AMF

Shift step

Shift

10

5

1 2 43 5

(1)w −

-1-2-3-4-5 0

A C G C G C T G C A G T A T G A C G A T

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 1

0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 1 1

0 0 1 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1

Fig. 4. The pattern of AMF corresponding to a deletion of size 2

Fig. 5. Detection of the position of a DELETION. A nucleotide ‘T’ in green color on the reference
genome is deleted. In M(0) almost all elements before this nucleotide are 0 while almost all
elements after it are 1. In M(1) the pattern is just the opposite.

SEME: A Fast Mapper of Illumina Sequencing Reads with Statistical Evaluation 21

only consider M(1) because the AMF calculation indicates that an 1-nucleotide-deletion
exists somewhere, and the purple boundary indicates the position of the deletion.

Now we summarize the general AMF method as below.

Algorithm 1 AMF Algorithm

1. Examine AMF(0), AMF(1), AMF(−1), . . ., AMF(d), AMF(−d) sequentially (d is
the maximum length of INDEL allowed) till AMF(µ) < ξ for a certain µ, where ξ is
a predetermined value. A positive µ means a DELETION, and a negative µ means
an INSERTION. The absolute value of µ estimates the length of the INDEL.

2. If such µ does not exist, we skip this extension (either a false mapping or a more
complicated INDEL pattern exists); Else if µ = 0, it means no INDEL; otherwise
we use the pair [M(0),M(µ)] to detect the position of the INDEL in the next step.

3. Take the subsequence to the right of the mapped seed for example, and denote its
length by l.

– Initialization: let D0 =
∑

j w(µ) j, T MP = D0, POS IT ION = 0.
– Recursion: For j = 1 : l, Di = Di−1+[M(0)i−M(µ)i]; If Di < T MP, T MP = Di,

and POS IT ION = j.
– Output POSITION.

For 100bp re-sequencing reads of the human genome, only a tiny fraction could be an-
chored by a fairly large seed, say 32bp, but could not be extended by the AMF method,
and they are examined by the Smith-Waterman algorithm.

2.4 Computational Complexity

Some notations and definitions that are necessary for the complexity evaluation are
listed in Table 1. We first consider those reads that can be mapped to the reference.
Mapping such a short read is accomplished through: 1) finding a perfect match seed, 2)
detecting the INDEL length, 3) detecting the start position of the INDEL if its length
is nonzero. Next we decompose the time spent on each part in details according to the
algorithm.

The time spent on exact match is nsTmp seed, where Tmp seed varies depending on the
algorithmic implementation and hardware. If we take the searching scheme described in

Table 1. Symbols and notations used in the complexity evaluation

Symbol Definition
ns number of scanned seeds in a read, ns ≤ 2(n − k + 1)
nw number of seeds which are mapped to the reference but cannot be extended
Tcmp nt time of comparing a pair of nucleotides
Tcmp int time of comparing two integers
Tadd int time of adding two integers
Tmp seed time of mapping a single seed
l length of the read’s subsequence involved in extension, l ≤ n − k + 1
µ length of an INDEL
Q maximum length of an INDEL to be detected

22 S. Chen, A. Wang, and L.M. Li

Subsection 2.1, mapping a single seed has three steps: 1) obtaining a starting lower and
upper bound in the index table for the seed using its block address; 2) binary searching
for the two adjacent 32-mers between which the seed can insert; 3) finding the max-
imum length of perfect match up to 32 nucleotide bases. In the first step, the integer
corresponding to a 32-mer seed needs to be divided by 264−r, where r is the number of
binary search we would like to reduce. This can be achieved by 64 − r shift operations
on the integer. In addition, two data access operations are required to get the two start-
ing index bounds. The second step contains about (30 − r) data access operations and
30 − r integer comparison. The third step can easily be implemented by shifting and
comparing integers.

After finding a perfect match seed, we need to compute the values of AMF function
to detect the possible “1-INDEL” length µ. First, the calculation of M(i) takes l, l and l−
|i| comparisons of nucleotides pairs between the read and reference respectively for i =
0, i > 0 and i < 0. Second, calculation of w(i) takes l and l − i comparisons of Boolean
elements in M(0) and M(i) respectively for i > 0 and i < 0. Third, the calculation
of AMF(i) takes roughly l integer additions. To detect an INDEL’s start position, we
can implement the third step of Algorithm 1 with the following time respectively for
deletion and insertion:

(l−1)Tadd int+ l(Tcmp int+Tadd int) , and (l−μ−1)Tadd int+(l−μ)(Tcmp int+Tadd int) .

Putting together and assuming we calculate AMF(i) in the order of i = 0, 1,−1, 2,−2, · · ·,
we have the following total time, ignoring the constant terms with respect to l.

T ≈ nsTmp seed + nw l[(2Q + 1)Tcmp nt + 2QTcmp int + (2Q + 1)Tadd int] (1)

+

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

l[Tcmp nt + Tadd int] µ = 0
l[2µTcmp nt + 2µTcmp int + (2µ + 2)Tadd int] µ > 0
l[(2|µ| + 1)Tcmp nt + (2|µ| + 1)Tcmp int + (2|µ| + 3)Tadd int] µ < 0

(2)

The first term is the complexity of mapping seeds; the second term is the complexity of
the unsuccessful extension of those anchored seeds. The third term is the complexity of
the successful extension of the final seed. Possibly ns includes the number of seeds that
cannot be mapped anywhere, thus ns ≥ nw. Later we will show that the specificity goes
up as the seed length goes up. When the specificity is sufficiently large, the chance of
nw > 0 is small. For those reads that cannot be mapped to the reference, the third term
is zero. So the time is

T ≈ nsTmp seed + nw l[(2Q + 1)Tcmp nt + 2QTcmp int + (2Q + 1)Tadd int] .

In our experience, for most of the mappable reads, the number of trial seeds is much
smaller than the total number of seeds. If we set a threshold for the number of trial
seeds then we avoid fruitlessly scanning. To set this threshold, we need to know the
distribution of ns for the mappable reads. Let A(i) = #{ns(among mappable reads) = i},
namely, the number of reads which need i trial seeds till a successful mapping, 1 ≤ i ≤
(n − k + 1), Fig. 6 shows the frequencies of A(i) for an 100K-short-read data set. It is
obvious that most of the mappable short reads are scanned only a few times. In fact, the
99% quantile of A(i) in this example is 11, and the average number of trial seeds, for all

SEME: A Fast Mapper of Illumina Sequencing Reads with Statistical Evaluation 23

0 10 20 30 40 50

1
2

3
4

5

i−(the number of trial seeds)

Lo
g(A

(i))

Fig. 6. Frequencies of ns for mappable reads. The y-axis shows log10(A(i)). The results are ob-
tained from 100K 76bp short reads downloaded from NCBI data base, archive SRR003196.
Among them 83K reads are mappable.

the short reads (including the unmapped reads) is only 2.9 for this data set. This gives
an estimate of E(ns) and it explains, at least from one angle, why the sequential seeding
strategy is efficient compared with that of fixed-number-seeding. The higher the quality
of a read data set is, the less the average number of trial seeds are needed.

We also calculate the average length of INDELs in the example explained in the
introduction section. It turns out that the average of µ is around 2.9. This means that on
average, we only need to shift a short read rightwards and leftwards with respect to the
reference 3 times.

3 Statistical Evaluation

In this section we evaluate the mapping accuracy of SEME based on probabilistic mod-
els. Several important statistical approaches have been developed for specific sequence
alignment problems. For example, the statistic D2[13] concentrates on the number of
k-mer perfect match between two sequences of lengths m and n, and evaluate its asymp-
totics when m and n go to infinity. The concept of excursion in random walks and some
other advanced techniques in probability were used in evaluating the significance of
BLAST[14] results. In the current mapping problem, the read, say 100 bp, is much
shorter than the reference genome. The asymptotics that requires both m and n go to
large do not apply. In order to evaluate the sensitivity and specificity of the SEME map-
ping result, we propose another approach, which essentially compares the n-length read
with every n-length subsequence of the reference.

Suppose that the read length is n, and we define sensitivity to be the probability that
a read is mapped to where it is from, and specificity as the probability that the read
does not map to any other positions – excluding repeats and possibly highly conserved
homologs – on the reference. We approximate this event by any positions on a random
reference of the same size. Let ν be the chance that the read is mapped to a random
n-mer subsequence. According to subadditivity of probability

1 − speci f icity ≤ min{Nν, 1},
Corresponding to the two stages of SEME, we make the following decomposition:

sensitivity = τ θ, ν = η θ∗, (3)

24 S. Chen, A. Wang, and L.M. Li

where τ and r are respectively the probabilities of finding a k-mer perfect match be-
tween two n-length sequences under a correct location and a random location. θ and
θ∗ are respectively the conditional probabilities of accepting extension under a correct
location and a random situation. Assuming that the n positions are independent and
the match rate is constant, we calculate τ and η precisely, and the result is accurate no
matter what the read length is. θ is obtained by a soft counting method, which calcu-
lates the probability of the extension based on the distribution of the imputed “possible
polymorphism” numbers that aim to adjust the effect of base-calling errors.

Lemma. For two n-length sequences, assume that bases at different positions are inde-
pendent and the match rate for all positions is a constant p, then the probability that an
k-mer perfect match exists is given by

τ(k, p) =
n∑

m=0

[
K(m)∑

s=1

(−1)s+1Cs
m+1Cm

n−ks](1 − p)m pn−m,

where K(m) = max{s; n − ks ≥ m} ∧ (m + 1).

In fact, τ(k, p) increases with p and decreases with k.
We first apply this lemma to the calculation of τ = τ(k; p), where p is the matching

rate between a read and the region where it is from and it depends on the polymorphism
rate and sequencing error rate. Let X, Y, S represent the reference, individual genome
and short read respectively. It can be shown that the mismatch rate at the site (Xi, Yi, S i)
is (1 − βi)γ + (1 − γ)βi + γβiwi, where γ = Pr(Xi � Yi) is the polymorphism rate, or
simply the SNP rate if we skip the INDEL for the moment; and βi = Pr(Yi � S i), the
miscall rate; wi = Pr(S i � Xi|Yi � S i, Yi � Xi). We note that in this context we use
the jargon “polymorphism rate” γ as a measure of genomic discrepancies between the
target individual and the reference, but not as a measure of population genetics. Since
γβi is small, we have the approximation to the match probability: pi ≈ 1−γ−βi. For the
moment, we replace βi by their average. We show the curves of τ under different settings
in Fig 6(a). For example, the green solid line corresponds to the case of 100bp-reads
with a 0.99 match rate. In this case, the sensitivity is satisfactory even when k = 30.

Next we apply the lemma to the random situation. In η = τ(k; pη), we set the match
rate pη to be the sum of the squares of the base composition rates (usually around 0.25).
In Fig 6(a), the red line, representing the trend of η, drops to zero quickly even when
the seed is short, and to some extent it displays the specificity of SEME.

Soft Counting Criterion. The extension stage validates the anchor position by check-
ing the the number of inconsistencies between the reference and the read. For now,
we simply exclude INDEL positions. MAQ [3] evaluates a mapping result by calcu-
lating the posterior probability that the read comes from the region, and it regards the
hit with the highest posterior as the correct result. The posterior can be maximized
effectively by minimizing the sum of quality values of mismatched bases. We note
that mismatches could be caused by miscalls as well as polymorphisms, and base-
calling errors are not strong evidence of incorrect mapping. Instead of hard counting
of mismatches, we propose a soft counting method that imputes the “possible poly-
morphism” fractions from all mismatch sites using quality values and an appropriate

SEME: A Fast Mapper of Illumina Sequencing Reads with Statistical Evaluation 25

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a)

seed length

an
ch

or
 r

at
e

10 15 20 25 30

−
4

−
2

0
2

4
6

8

(b)

seed length

−
lg

(N
η)

Fig. 7. (a) The probability of finding a perfect k-mer match between two sequences of the same
length with respect to k. The solid lines, dashed lines and dotted lines represent the occasions for
100bp, 76bp, 35bp sequences; and the red, gray, orange, green, blue and purple lines respectively
correspond to the common match rate 0.25, 0.95, 0.975, 0.99, 0.995, 0.999. (b) − lg(Nη) vs. seed
length, where η is the probability that the read is anchored to a random subsequence of the same
length. The red, blue, green, and orange lines correspond to the cases for 35bp, 76bp, 100bp, and
110bp reads respectively. We use it as a measure of specificity to guide seed length selection.

polymorphism rate, aiming at reducing the effect of miscalls on mismatch sites. Con-
sequently, we evaluate the mapping result based on the sum of the imputed “possible
polymorphism” fractions. Specifically, according to the setup above, the mismatch rate
is 1− pi = (1−βi)γ+βi[(1−γ)+γwi]. We impute the “possible polymorphism” fractions
at mismatch sites as

(1 − βi)γ
(1 − βi)γ + βi[(1 − γ) + γwi]

,

which can well be approximated by γ
βi+γ

. If quality scores are available and can be

interpreted as probabilities, we have βi = 10−
qi
10 , see [15,16]. Our statistic is defined

to be ∑

i at mismatch sites

γ

βi + γ
.

Under the assumption of independence, its distribution is binomial(n − k,γ). Conse-
quently, we can convert the statistic score of an alignment into a p-value. In this case,
the larger the p-value, the stronger evidence of accepting the mapping.

Since the seed and extension part do not overlap, we can regard them as approx-
imately independent. θ is the type one error probability of the associated test of the
hypothesis: the anchor is correct. We can set the significance level α of this test to en-
sure a reasonable sensitivity. In fact, τ(1 − α) is an upper bound for the sensitivity of
SEME. The curves in Fig 6(a) show the sensitivity excluding the factor (1 − α) under
different settings and can serve as a guidance for seed length selection.

We can similarly calculate the sum of inconsistencies of an extension alignment un-
der the random sequence assumption, and its asymptotic distribution is normal.

26 S. Chen, A. Wang, and L.M. Li

The chance that we accept an incorrect anchor should be small as validated by our
simulations. Essentially 1 − θ∗ is the power of the associated test. For the moment, we
use Nη as a conservative bound of specificity when choosing seed length. As a matter
of fact, Nη is also the average number of anchor places across the whole genome by
chance. The curves of − lg(Nη) with respect to seed length are shown in Fig 6(b).

3.1 Seed Length Determination

The seed length selection is a trade off between sensitivity and specificity. Shorter seeds
increase sensitivity, but may lead to many incorrect anchor places; longer seeds increase
specificity, but the seed may be mapped nowhere. To ensure both of them, the seed
length should be in a proper range.

According to Fig 6(b), the curves corresponding to different read lengths are close to
each other, especially as the size is larger than 76bp. Only when the seed length is cho-
sen to be at least 19 or 20, the average number of anchor positions by chance would be
smaller than 1. If we would ensure specificity larger than 0.999, the lower bound should
be up to 24 or 25. Of course, this estimate might be conservative because Nη is a con-
servative bound of specificity. On the other hand, slightly larger lower bound can help
avoid false positive anchors, which are expected to be rejected in the extension stage.
The upper bound is chosen according to the sensitivity curve and our tolerance. For
100-bp reads with an average 0.99 match rate, [20, 32] is a proper range of seed length.
In practice, the binary search algorithm simply find the maximum exact match length
up to 32 nucleotide for each seed. If it is above 20, we then evaluate the significance
based on this exact match length.

If the seed is 20-mer, the sensitivity for 35bp reads with a match rate 0.975 is 0.83,
while it grows to 1− 6.95× 10−4 for 100bp reads with a match rate 0.975. If we choose
32-mer seed and assume the match rate is 0.99, then the sensitivity is 0.75, 0.98, and
0.99587 respectively for 35bp, 76bp and 100bp reads. For shorter reads with lower
quality, the seed length may even drop to less than 20 to ensure a fair sensitivity. This
is the reason why in the early days of NGS, the strategy using single seed of perfect
match did not work while it is feasible nowadays as the read length and sequencing
quality improves.

4 Results

In our examples, the reference genome is the human genome hg18. We report compar-
isons of SEME with Bowtie2 (Version 2.0.0-beta7) and SOAP2[17,18] on three data
sets from NCBI database, each of which includes 2 million reads. To make fair com-
parisons, we implement SEME by mimicing the parameters in the ’–sensitivity’ mode
for Bowtie2 and ‘-v4 mode for SOAP2 respectively.

Mapping rates and time are two key measures for evaluating read mappers. We show
the comparison of Bowtie2 and SEME on the left in Table 2. For data set 1, the running
time of SEME reduces to about 1/4 whereas the mapping rate of SEME is 14.6(88.0-
73.4)% higher than that of Bowtie2. Comparing with data set 1, the running time of
Bowtie2 for data set 2 is a little more while that of SEME reduces further by a third.
This phenomenon is due to the fact that the number of Bowtie2’s trial seeds is fixed for

SEME: A Fast Mapper of Illumina Sequencing Reads with Statistical Evaluation 27

Table 2. Comparison of SEME, Bowtie2 and SOAP2. n is the read length of each data set. The
three data sets are from NCBI database, namely, short read archives SRR003196, SRR033622
and SRR054721. They are all generated by the Illumina Platform. Each data set contain two
million short reads. Left: Comparison with Bowtie2; right: Comparison with SOAP2

n Programme Time(s) Map rate(%)

76 Bowtie2 508 73.4
SEME 124 88.0

75 Bowtie2 542 96.1
SEME 81 98.8

100 Bowtie2 787 95.5
SEME 95 99.2

n Programme Time(s) Map rate(%)

76 SOAP2 290 39.4
SEME 164 50.4

75 SOAP2 207 80.5
SEME 112 87.0

100 SOAP2 261 74.5
SEME 161 81.7

each short read while that of SEME mainly depends on the quality of each short read,
that is, better quality, less trial seeds. Notice that the read lengths of data set 1 and 2 are
about the same and the quality of the latter is better. From data set 2 to 3, the read length
extends to 100, whereas the quality are similar. We can see that the mapping time of
Bowtie2 increases, but SEME remains about the same, which verifies our analysis.

We show the comparisons of SOAP2 and SEME on the right in Table 2. Since the -v4
mode only allow 4 mismatches, mapping rates of both SOAP2 and SEME for all 3 data
sets are lower than those in the comparison with BOWTIE2. Not only does the running
time of SEME reduces to about one half, but also it has a 7-11% gain in mapping rates.

In sum, compared with Bowtie2, SEME runs 4.1-8.3 times faster depending on qual-
ity of data sets; Compared with SOAP2, SEME runs twice faster while the mapping
rate of SEME is substantially higher.

5 Discussion

SEME has two key features. The first one is its novel mapping algorithm, which obeys
the “seed-and-extend” paradigm. A common approach of the seed stage is to map mul-
tiple seeds at the same time and then make them to full alignments. The number of these
multiple seeds is usually fixed from read to read. Different from this approach, SEME
maps seeds sequentially. The number of seeds need to be mapped depends on the dis-
tribution of mismatch sites on the short read. The scan function of SEME efficiently
minimizes the average number of trial seeds. In the extension stage, SEME can detect
the pattern, position and length of small INDELs by means of auto match function and
auto match vectors without enumerating all possible combinations or carrying out local
alignment algorithm. Time complexity of the extension stage is linear with respect to
the read length.

The second feature is that SEME has its own statistical evaluation of mapping reli-
ability, which is critical for NGS, especially its applications to medicine. Compared to
the vast amount of algorithmic development, not much associated statistics was found
in the literature so far. A statistical evaluation of a mapping result is justifiable only
if the model on which the analysis is based captures the data characteristics and fol-
lows the mapping algorithm closely. Our statistical analysis of the “seed-and-extend”

28 S. Chen, A. Wang, and L.M. Li

scheme essentially boils down the evaluation of specificity and sensitivity to the match-
ing chance of two n-length sequences, where n is the short read length. We decompose
the probabilities into two parts: one corresponds to the seed stage and the other cor-
responds to the extension stage. Since we stick to perfect match in the seed stage, the
calculation of the exact probability is relatively easy, see Lemma. In the extension stage,
the sum of “possible polymorphism” fractions can approximately be described by either
a binomial or a normal distribution.

The random sequence assumption is definitely far from a perfect description of
any common natural genome because it ignores more complicated issues such as du-
plications and homologs. Appropriate simulations may complement the model-based
analysis to some extent. We carried out limited simulations, and the results are quite
comparable with the analytical results in terms of the values of τ and r in Equation (3).

SEME is very flexible due to its data structure and sequential scan strategy. Depend-
ing on the mapping context, the condition of the short reads and the requirement of the
mapping result, we can adjust the seed length, the scan scheme and the upper bound of
trial seeds. The optimization of the scan scheme depends on several factors such as the
sequencing quality pattern, and we are conducting more investigations. We implement
the method in C++, but the process of improving the code is ongoing.

Other than the straightforward mapping problem, we did not elaborate on SEME’s
variants that we are working on. For example, by encoding and decoding ‘C’ and ‘T’
with a common letter, we can use SEME to map short reads and allow methylation
sites. However, with this setup, the values of sensitivity and specificity, the seed length
need to be re-evaluated. For now, SEME deals with pair-end data by treating them as
independent reads. How to integrate information from both ends to speed up mapping is
an interesting problem to be considered. The detection of alternative splicing site inside
a single seed is a more challenging task. As the Illumina read length goes beyond 160bp,
the ideas of SEME described in this report may help solve the problem. Particularly, we
emphasize that the statistical evaluation is important for justifying the significant of any
new genomic discovery.

Acknowledgements. We thank Dr. Yong Zhang and Dr. Zhixiang Yan from BGI-
Shenzhen for their help. We thank Bo Wang and Lixian Yang for their help on pro-
gramming. This work was supported by the National Center for Mathematics and Inter-
disciplinary Sciences, CAS, the Program of “One hundred talented people”, CAS, and
grant 91130008 from Chinese National Science Foundation.

References

1. Li, H.: A survey of sequence alignment algorithms for next-generation sequencing. Brief
Bioinformatics 11, 473–483 (2010)

2. Ben, L., et al.: Ultrafast and memory-efficient alignment of short DNA sequences to the
human genome. Genome Biology 10, R25 (2009)

3. Li, H., Ruan, J., Durbin, R.: Mapping short DNA sequencing reads and calling variants using
mapping quality scores. Genome Res. 18, 1851–1858 (2008)

4. Hui, J., Wing-Hung, W.: SeqMap: mapping massive amount of oligonucleotides to the
genome. Bioinformatics 24, 2395–2396 (2008)

SEME: A Fast Mapper of Illumina Sequencing Reads with Statistical Evaluation 29

5. MiSeq Personal Sequencer - Illumina,
http://www.illumina.com/systems/miseq.ilmn

6. Xun, G., Wen-Hsiung, L.: The Size Distribution of Insertions and Deletions in Human and
Rodent Pseudogenes Suggests the Logarithmic Gap Penalty for Sequence Alignment. J. Mol.
Evol. 40, 464–473 (1994)

7. Ryan, E.M., Christopher, T., et al.: Luttig, An initial map of insertion and deletion (INDEL)
variation in the human genome. Genome Res. 16, 1182–1190 (2006)

8. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol.
Biol. 147, 195–197 (1981)

9. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search
tool. J. Mol. Biol. 215, 403–410 (1990)

10. Karlin, S., Altschul, S.F.: Methods for assessing the statistical significance of molecular se-
quence features by using general scoring schemes. Proc. Natl. Acad. Sci. U S A 87, 2264–
2268 (1990)

11. Waterman, M.S.: General methods of sequence comparison. Bull. Math. Biol. 46, 473–500
(1984)

12. Waterman, M.S.: Introduction to Computational Biology: Maps, Sequences and Genomes.
Chapman & Hall, London (1995)

13. Ross, A.L., Haiyan, H., Waterman, M.S.: Distributional regimes for the number of k-word
matches between two random sequences. PNAS 99, 13980–13989 (2002)

14. Warren, J.E., Gregory, R.G.: Statistical Methods in Bioinformatics: An introduction.
Springer, New York (2001)

15. Brent, E., Phil, G.: Base-Calling of Automated Sequencer Traces Using Phred. II. Error Prob-
abilities. Genome Res. 8, 186–194 (1998)

16. Ming, L., Magnus, N., Lei, M.L.: Adjust quality scores from alignment and improve se-
quencing accuracy. Nucleic Acids Research 32, 5183–5191 (2004)

17. Ruiqiang, L., Yingrui, L., Karsten, K., Jun, W.: SOAP: short oligonucleotide alignment pro-
gram. Bioinformatics 24, 713–714 (2008)

18. Ruiqiang, L., Chang, Y., Yingrui, L., et al.: SOAP2: an improved ultrafast tool for short read
alignment. Bioinformatics 25, 1966–1967 (2009)

19. Zaharia, M., Bolosky, W.J., Curtis, K., Fox, A., Patterson, D., Shenker, S., Stoica, I.,
Karp, R.M., Sittler, T.: Faster and More Accurate Sequence Alignment with SNAP.
arXiv:1111.5572 [cs.DS] (2011)

http://www.illumina.com/systems/miseq.ilmn

	SEME: A Fast Mapper of Illumina Sequencing Reads with Statistical Evaluation
	Introduction
	Method
	Index Table of Sorted 32-Mers and Binary Search
	Seed Stage
	Extension Stage
	Computational Complexity

	Statistical Evaluation
	Seed Length Determination

	Results
	Discussion
	References

