

Comp 555 - BioAlgorithms - Spring 2022

- P5 #5 IS GRADED
 P5 #6 BY THURSDAY
- FINAL STUDY SESSION THURSDAY APRIL 28 (2:00-3:15)
- NO OFFICE HRS ON THURSDAY

Tools for Measuring Dissimilarity

- We've developed many tools for comparing pairs of sequences this semester
 - Hamming Distance
 - Alignment scores k-mer profiles
- Given a population of N sequences it is a simple matter to compare them pairwise

Is it possible to ascertain their evolutionary relationships?

- One can easily construct a matrix filled with scores comparing the "Distances" between each pair of sequences
- Properties
 - Identity: $d_{i,i} = 0$
 - Symmetry: $d_{i,j} = d_{j,i}$
 - Triangle Inequality: $d_{i,j} \le d_{i,k} + d_{k,j} \forall j$
- Can be visualized as a graph.
 A clique graph with edges for each distance

2	g_1	g_2	93	<i>g</i> ₄	g_5	<i>g</i> 6	97	<i>9</i> 8	99	<i>g</i> 10
g_1	0.0	8.1	9.2	7.7	9.3	2.3	5.1	10.2	6.1	7.0
g_2	8.1	0.0	12.0	0.9	12.0	9.5	10.1	12.8	2.0	1.0
g_3	9.2	12.0	0.0	11.2	0.7	11.1	8.1	1.1	10.5	11.5
94	7.7	0.9	11.2	0.0	11.2	9.2	9.5	12.0	1.6	1.1
g_5	9.3	12.0	0.7	11.2	0.0	11.2	8.5	1.0	10.6	11.6
<i>9</i> 6	2.3	9.5	11.1	9.2	11.2	0.0	5.6	12.1	7.7	8.5
97	5.1	10.1	8.1	9.5	8.5	5.6	0.0	9.1	8.3	9.3
<i>9</i> 8	10.2	12.8	1.1	12.0	1.0	12.1	9.1	0.0	11.4	12.4
99	6.1	2.0	10.5	1.6	10.6	7.7	8.3	11.4	0.0	1.1
<i>g</i> 10	7.0	1.0	11.5	1.1	11.6	8.5	9.3	12.4	1.1	0.0

- Construct a tree graph that attempts to preserve all pairwise distances of the distance matrix
- The tree can be rooted

	g_1	<i>g</i> ₂	g_3	<i>g</i> 4	<i>9</i> 5	<i>9</i> 6	97	<i>g</i> 8	<i>g</i> 9	g 10
g_1	0.0	8.1	9.2	7.7	9.3	2.3	5.1	10.2	6.1	7.0
g_2	8.1	0.0	12.0	0.9	12.0	9.5	10.1	12.8	2.0	1.0
g_3	9.2	12.0	0.0	11.2	0.7	11.1	8.1	1.1	10.5	11.5
94	7.7	0.9	11.2	0.0	11.2	9.2	9.5	12.0	1.6	1.1
95	9.3	12.0	0.7	11.2	0.0	11.2	8.5	1.0	10.6	11.6
96	2.3	9.5	11.1	9.2	11.2	0.0	5.6	12.1	7.7	8.5
97	5.1	10.1	8.1	9.5	8.5	5.6	0.0	9.1	8.3	9.3
<i>g</i> 8	10.2	12.8	1.1	12.0	1.0	12.1	9.1	0.0	11.4	12.4
99	6.1	2.0	10.5	1.6	10.6	7.7	8.3	11.4	0.0	1.1
<i>g</i> 10	7.0	1.0	11.5	1.1	11.6	8.5	9.3	12.4	1.1	0.0

Or unrooted

A common ancestor is inferred at the "joining nodes" of these trees. There is n-2 joining nodes in an unrooted tree and n-1 in a rooted one

Comp 555

Distance in Trees

Fitting a Tree to a Distance Matrix

 D_{ij} may be defined as the "distance" between a gene in species *i* and species *j*, where the gene of interest is sequenced for all *n* species.

D_{ii} – distance between i and j

Note the difference with

 $d_{ij}(T)$ – tree distance between i and j

• Fitting means $D_{ij} \cong d_{ij}(T)$ Lengths of path in an (*unknown*) tree T

Distance between species (*given*)

Simple Case a 3-leaved tree

- Tree reconstruction for any 3x3 matrix is straightforward
- We have 3 leaves *i*, *j*, *k* and a center vertex *c*

 $\frac{\text{Observe:}}{d_{ic} + d_{jc} = D_{ij}}$ $d_{ic} + d_{kc} = D_{ik}$ $d_{jc} + d_{kc} = D_{jk}$

3 linear equations with 3 unknowns (d_{ic}, d_{jc}, d_{kc}).

Reconstructing a 3 Leaved Tree (cont'd)

$$d_{ic} + d_{jc} = D_{ij}$$

+ $d_{ic} + d_{kc} = D_{ik}$
 $2d_{ic} + d_{jc} + d_{kc} = D_{ij} + D_{ik}$
 $2d_{ic} + D_{jk} = D_{ij} + D_{ik}$
 $d_{ic} = (D_{ij} + D_{ik} - D_{jk})/2$

Similarly,

$$d_{jc} = (D_{ij} + D_{jk} - D_{ik})/2$$

 $d_{kc} = (D_{ki} + D_{kj} - D_{ij})/2$

0

Trees with > 3 Leaves

An unrooted tree with n leaves has 2n-3 edges*

- This means fitting a given tree to a distance matrix D requires solving a system of "n choose 2" or ½ x(x-1) equations with 2n-3 variables (over-specified)
- This is not always possible to solve for n > 3 given arbitrary/noisy distances

* Assumes all internal nodes are of degree 3 (i.e. a node is arrived to along one edge and separates into 2 cases by mutation)

Additive Distance Matrices

Definition: Matrix *D* is **Additive** if there exists a tree *T* with $d_{ij}(T) = D_{ij}$ for all *i*,*j*

	А	В	С	D
А	0	2	4	4
В	2	0	4	4
С	4	4	0	2
D	4	2	2	0

NON-ADDITIVE otherwise

	А	В	С	D
А	0	2	2	2
В	2	0	3	2
С	2	3	0	2
D	2	2	2	0

How, from a distance matrix, does one determine if a tree exists?

Distance Based Phylogeny Problem

- <u>Goal</u>: Reconstruct an evolutionary tree from a distance matrix
- Input: *n* x *n* distance matrix *D_{ii}*
- <u>Output</u>: weighted tree T with n leaves fitting D
- If *D* is additive, this problem has a solution and there is a simple algorithm to solve it

Using Neighboring Leaves

- Find **neighboring leaves** *i* and *j* with common parent *k*
- Remove the rows and columns of *i* and j
- Add a new row and column corresponding to k, where the distance from k to any other leaf m can be computed as:

$$D_{km} = (D_{im} + D_{jm} - D_{ij})/2$$

Finding Neighboring Leaves

- Or solution assumes that we can easily find neighboring leaves given only distance values
- How might one approach this problem?
- It is not as easy as selecting a pair of closest leaves.

How, from a distance matrix, does one determine a pair of , neighboring leaves?

- Close leaves aren't necessarily neighbors
- *i* and *j* are neighbors, but $(d_{ii} = 13) > (d_{ik} = 12)$

 Finding a pair of neighboring leaves is a nontrivial problem! (we'll return to it later)

Neighbor Joining

- In 1987 Naruya Saitou and Masatoshi Nei developed a neighbor joining approach for phylogenetic tree reconstruction
- Finds a pair of leaves that are close to each other but far from other leaves: implicitly finds a pair of neighboring leaves
- Advantages: works well for additive and other non-additive matrices, it does not require a "molecular clock" assumption

- A degenerate triple is a set of three distinct elements $1 \le i,j,k \le n$ where $D_{ij} + D_{jk} = D_{ik}$
- Called *degenerate* because it implies i, j, and k are collinear.
- Element *j* in a degenerate triple *i,j,k* lies on the evolutionary path from *i* to *k* (or is attached to this path by an edge of length 0).

Looking for Degenerate Triples

• If distance matrix *D* has a degenerate triple *i,j,k* then *j* can be "removed" from *D* thus reducing the size of the problem.

 If distance matrix D does not have a degenerate triple *i,j,k, one can "create"* a degenerative triple in D by shortening all hanging or leaf edges in the tree.

 Shorten all "hanging" edges (edges that connect leaves) until a degenerate triple is found

Finding Degenerate Triples

- If there is no degenerate triple, all hanging edges are reduced by the same amount δ , so that all pair-wise distances in the matrix are reduced by 2δ .
- Eventually this process collapses one of the leaves (when δ = length of shortest hanging edge), forming a degenerate triple *i*,*j*,*k* and reducing the size of the distance matrix *D*.
- The attachment point for *j* can be recovered in the reverse transformations by saving D_{ij} for each collapsed leaf.

Reconstructing Trees

Comp 555

Spring 2022

AdditivePhylogeny Algorithm

- 1. AdditivePhylogeny(*D*)
- 2. if *D* is a 2 x 2 matrix
- 3. $T = \text{tree of a single edge of length } D_{12}$
- 4. return *T*
- 5. if *D* is non-degenerate
- 6. δ = trimming parameter of matrix *D*
- 7. for all $1 \le i \ne j \le n$
- 8. $D_{ij} = D_{ij} 2\delta$
- 9. else
- 10. $\delta = 0$

AdditivePhylogeny (cont'd)

- 1. Find a triple *i*, *j*, *k* in *D* such that $D_{ii} + D_{ik} = D_{ik}$
- 2. $x = D_{ii}$
- 3. Remove j^{th} row and j^{th} column from D
- 4. T = AdditivePhylogeny(D)
- 5. Add a new vertex v to T at distance x from i to k
- 6. Add *j* back to *T* by creating an edge (v,j) of length 0
- 7. for every leaf l in T
- 8. if distance from *I* to *v* in the tree $\neq D_{l,i}$
- 9. output "matrix is not additive"
- 10. return
- 11. Extend all "hanging" edges by length δ
- 12. return *T*

The Four Point Condition

- AdditivePhylogeny Algorithm provides a way to check if distance matrix D is additive (i.e. it converges to a single 2 by 2 matrix)
- An even more efficient check for additivity is the "four-point condition", which can be tested before running AdditivePhylogeny()
- Let $1 \le i,j,k,l \le n$ be four distinct leaves in a tree

The Four Point Condition (cont'd)

2 and 3 give the same sum: $t_2 == t_3$ The length of all edges + the middle edge twice

And, $t_1 < t_2, t_3$ The length of all edges – the middle edge

 The four point condition for the quartet *i,j,k,l* is satisfied if two of these sums are the same, with the third sum smaller than these first two. How many tests?

$$_{n}C_{4} = n!/(4!(n-4!)) = n(n-1)(n-2)(n-4)/24$$

 Theorem : An n x n matrix D is additive if and only if the four point condition holds for every quartet 1 ≤ i,j,k,l ≤ n

25

Least-Squares Distance Phylogeny Problem

• If the distance matrix *D* is NOT additive, then we look for a tree *T* that approximates *D* the best:

Squared Error:
$$\sum_{i,j} (d_{ij}(T) - D_{ij})^2$$

- Squared Error is a measure of the quality of the fit between distance matrix and the tree: we want to minimize it.
- Least Squares Distance Phylogeny Problem: finding the best approximation tree *T* for a non-additive matrix *D*.

UPGMA

- Unweighted Pair Group Method with Arithmetic Mean (UPGMA)
- UPGMA is a hierarchical clustering algorithm:
 - assigns the distance between clusters to be the average pairwise distance
 - assigns a *height* to every vertex in the tree, that is midway between the cluster distances

- The algorithm produces an *ultrametric rooted* tree : the distance from the root to every leaf is the same
- UPGMA models a constant molecular clock:
 - all species represented by the leaves in the tree
 - assumed to coexist at t=0 and to have accumulated mutations (and thus evolve) at the same rate.
- In reality the assumptions of UPGMA are seldom true, but they are frequently approximately true.

"Balanced" Cluster Merging

Given two disjoint clusters C_i , C_i of sequences,

$$d_{ij} = \frac{1}{\left|C_i\right| \left|C_j\right|} \sum_{\substack{p \in C_i \\ q \in C_j}} d_{pq}$$

Note that if $C_k = C_i \cup C_j$, then the distance to another cluster C_i is:

$$d_{kl} = \frac{d_{il} |C_i| + d_{jl} |C_j|}{|C_i| + |C_j|}$$

UPGMA Algorithm

<u>Initialization:</u>

Assign each x_i to its own cluster C_i

Define one leaf per sequence, each at height 0

Iteration:

Find two clusters C_i and C_i such that d_{ii} is min

Let $C_k = C_i \cup C_j$

Add a vertex connecting C_i , C_j and place it at height $d_{ij}/2$

Delete C_i and C_j

Termination:

When a single cluster remains

UPGMA Algorithm (cont'd)

Comp 555 Spring 2015

first half of the course Exam will be designed for 2 hrs

 Exam will be designed for 2 hrs (~15 questions), but you will have the entire 3 hrs to complete it.

The Final will focus on material since

builds upon topics you may be asked

the midterm, but since the course

to draw upon knowledge from the

- Make sure that your ONYEN and PID are correctly filled in on your exam's signature cell!
- Don't leave questions unanswered.

Dynamic pr Sequence Alia

Divide and Conque Peptide Assembly

Hidden Markov Mo

Genome Rearrange Randomized Algorith....

Studying for the Exam

- Lecture slides
- Lecture notebooks
- Problem sets

It's Over

- Final Thursday, 5/5
 - noon 3pm
 - Be sure to sign into zoom
 - Open book, open notes, open internet, online
 - Will focus on material since midterm
 - Final Study session:
 - Thursday 4/28, 2:00-3:15pm

