
Comp 555 - BioAlgorithms - Spring 2022

Evolutionary Trees

● PS #5 is graded

PS #6 by Thursday

● Final Study session

Thursday April 28 

(2:00-3:15)

● No office hrs on Thursday



Comp 555 Spring 2022 2

Tools for Measuring Dissimilarity

• We've developed many tools for comparing pairs 
of sequences this semester
○ Hamming Distance
○ Alignment scores
○ k-mer profiles

• Given a population of N
sequences it is a simple 
matter to compare them 
pairwise

• Is it possible to ascertain their evolutionary 
relationships?



Comp 555 Spring 2022 3

Distance Matrices

• One can easily construct a matrix filled with 
scores comparing the "Distances" between each 
pair of sequences

• Properties
○ Identity: di,i = 0
○ Symmetry: di,j = dj,i
○ Triangle Inequality: 

di,j ≤ di,k+ dk,j  ∀j
• Can be visualized as a graph. 

A clique graph with edges 
for each distance



Comp 555 Spring 2022 4

Phylogenetic Tree Problem

• Construct a tree graph that attempts to preserve 
all pairwise distances of the distance matrix 

• The tree can be rooted

• Or unrooted
A common ancestor is inferred at 
the "joining nodes" of these trees. 
There is n-2 joining nodes in an 
unrooted tree and n-1 in a rooted one



* Comp 555 Spring 2022 5

Distance in Trees

       d1,4 = 12 + 13 + 14 + 17 + 13 = 69

2 3 4

5

4

1 6

13

12

17

16
12

13

1312

i

j

14

In a tree, unlike a 
general graph there 
exists exactly one 
path from any leaf 
node i to leaf node j

The goal is to construct a 
tree with joining nodes 
and edges such that all 
distances in the distance 
matrix are preserved, at 
least approximately.



* Comp 555 Spring 2022 6

Fitting a Tree to a Distance Matrix

• Fitting means Dij ≅ dij(T)

Lengths of path in an (unknown) tree T

Distance between species (given)

• Dij may be defined as the "distance" between a gene 
in species i and species j, where the gene of interest 
is sequenced for all n species.

           Dij – distance between i and j 
• Note the difference with 
       dij(T) – tree distance between i and j 



* Comp 555 Spring 2022 7

Simple Case a 3-leaved tree

• Tree reconstruction for any 3x3 matrix is 
straightforward

• We have 3 leaves i, j, k and a center vertex c

Observe:

dic + djc = Dij

dic + dkc = Dik

djc + dkc = Djk

3 linear equations with 
3 unknowns (dic, djc, dkc). 

i j

k

c

dic djc

djkc

Dij

Dik
Dik



* Comp 555 Spring 2022 8

Reconstructing a 3 Leaved Tree (cont’d)

         2dic +    Djk   = Dij + Dik

dic = (Dij + Dik – Djk)/2
Similarly,

djc = (Dij + Djk – Dik)/2
dkc = (Dki + Dkj – Dij)/2

      dic + djc = Dij

      +  dic + dkc = Dik

        2dic + djc + dkc = Dij + Dik

i j

k

c

dic djc

djkc

Dij

Dik
Dik



* Comp 555 Spring 2022 9

Trees with > 3 Leaves
• An unrooted tree with n leaves has 2n-3 edges*

• This means fitting a given tree to a distance matrix D 
requires solving a system of “n choose 2”  or ½ x(x-1) 
equations with  2n-3 variables

• This is not always possible to solve for n > 3
given arbitrary/noisy distances

* Assumes all internal nodes are of degree 3 (i.e. a node is arrived 
to along one edge and separates into 2 cases by mutation) 

(over-specified)



* Comp 555 Spring 2022 10

Additive Distance Matrices

Definition: Matrix D 
is Additive if there 
exists a tree T with 
dij(T) = Dij for all i,j

NON-ADDITIVE 
otherwise

A

B

C

D

A B C D

A 0 2 4 4

B 2 0 4 4

C 4 4 0 2

D 4 2 2 0

1

1

2
1

1

A B C D

A 0 2 2 2

B 2 0 3 2

C 2 3 0 2

D 2 2 2 0

How, from a 
distance matrix, 

does one 
determine if a 

tree exists?



* Comp 555 Spring 2022 11

Distance Based Phylogeny Problem

• Goal: Reconstruct an evolutionary tree from a 
distance matrix

• Input: n x n distance matrix Dij
• Output: weighted tree T with n leaves fitting D

• If D is additive, this problem has a solution and 
there is a simple algorithm to solve it



* Comp 555 Spring 2022 12

Using Neighboring Leaves 

• Find neighboring leaves i and j with common parent k
• Remove the rows and columns of i and j
• Add a new row and column corresponding to k, where 

the distance from k to any other leaf m can be 
computed as:

Dkm = (Dim + Djm – Dij)/2

Compress i and j into 
k, iterate algorithm for 
rest of tree



* Comp 555 Spring 2022 13

Finding Neighboring Leaves

• Or solution assumes that we can easily find 
neighboring leaves given only distance values

• How might one approach this problem?
• It is not as easy as selecting a pair of closest 

leaves.
 How, from a distance 

matrix, does one 
determine a pair of 
neighboring leaves?



* Comp 555 Spring 2022 14

Neighbors might not be close

• Close leaves aren’t necessarily neighbors
• i and j are neighbors, but (dij = 13) > (djk = 12)

• Finding a pair of neighboring leaves is a nontrivial 
problem! (we’ll return to it later)



* Comp 555 Spring 2022 15

Neighbor Joining

• In 1987 Naruya Saitou and Masatoshi Nei developed a 
neighbor joining approach for phylogenetic tree 
reconstruction

• Finds a pair of leaves that are close to each other but far 
from other leaves: implicitly finds a pair of neighboring 
leaves

• Advantages: works well for additive 
and other non-additive matrices, it 
does not require a "molecular clock" 
assumption



* Comp 555 Spring 2022 16

Degenerate Triples

• A degenerate triple is a set of three distinct 
elements 1≤ i,j,k ≤n where Dij + Djk = Dik

• Called degenerate because it implies i, j, and k are 
collinear.

• Element j in a degenerate triple i,j,k lies on the 
evolutionary path from i to k (or  is  attached to  
this path by an edge of length 0).



* Comp 555 Spring 2022 17

Looking for Degenerate Triples

• If distance matrix D has a degenerate triple i,j,k 
then j can be “removed” from D thus reducing the 
size of the problem.

• If distance matrix D does not have a degenerate 
triple i,j,k, one can “create” a degenerative triple in 
D by shortening all hanging or leaf edges in the 
tree.  

i
        j
k

i
        
j



* Comp 555 Spring 2022 18

Shortening Hanging Edges

• Shorten all “hanging” edges (edges that connect 
leaves) until a degenerate triple is found

Now (A,B,D) 
and (A,B,C)
are degenerate



* Comp 555 Spring 2022 19

Finding Degenerate Triples
• If there is no degenerate triple, all hanging edges are 

reduced by the same amount δ, so that all pair-wise 
distances in the matrix are reduced by 2δ.

• Eventually this process collapses one of the leaves 
(when δ = length of shortest hanging edge), forming a 
degenerate triple i,j,k and reducing the size of the 
distance matrix D.

• The attachment point for j can be recovered in the 
reverse transformations by saving Dij for each collapsed 
leaf.



Comp 555 - Spring 2022 Comp 555 Spring 2022 20

Reconstructing Trees

The tree is 
reconstructed 
by undoing the 
edge collapses



* Comp 555 Spring 2022 21

AdditivePhylogeny Algorithm

1. AdditivePhylogeny(D)
2.    if D is a 2 x 2 matrix
3.       T = tree of a single edge of length D1,2
4.       return T
5.    if D is non-degenerate
6.       δ = trimming parameter of matrix D
7.       for all 1 ≤ i ≠ j ≤ n
8.          Dij = Dij - 2δ
9.    else

10.       δ = 0



Comp 555 Spring 2022 22

AdditivePhylogeny (cont’d)

1.    Find a triple i, j, k in D such that Dij + Djk = Dik
2.    x = Dij
3.    Remove jth row and jth column from D
4.    T = AdditivePhylogeny(D)
5.    Add a new vertex v  to T at distance x from i to k
6.    Add j back to T  by creating an edge (v,j) of length 0
7.    for every leaf l in T
8.       if distance from l  to v  in the tree ≠ Dl,j
9.          output “matrix is not additive”

10.          return
11.    Extend all “hanging” edges by length δ
12.    return T



Comp 555 Spring 2022 23

The Four Point Condition

• AdditivePhylogeny Algorithm provides a way to 
check if distance matrix D is additive (i.e. it 
converges to a single 2 by 2 matrix)

• An even more efficient check for additivity is the 
“four-point condition”, which can be tested 
before running AdditivePhylogeny()

• Let 1 ≤ i,j,k,l ≤ n be four distinct leaves in a tree



Comp 555 Spring 2022 24

The Four Point Condition (cont’d)

Given 6 distances (Dij, Dik, Dil, Djk, Djl, Dkl): 
1. t1 = Dij + Dkl, 2. t2 = Dik + Djl, 3. t3 = Dil + Djk

1

2 3

2 and 3 give the 
same sum: t2 == t3
The length of all 
edges + the middle 
edge twice 

And, t1 < t2,t3 
The length of all 
edges – the 
middle edge

i k

lj

i k

lj

i k

lj



* Comp 555 Spring 2022 25

The Four Point Condition: Theorem

• The four point condition for  the quartet i,j,k,l  is 
satisfied if two of these sums are the same, with 
the third sum smaller than these first two. How 
many tests?

• Theorem : An n x n matrix D is additive if and 
only if the four point condition holds for every 
quartet 1 ≤ i,j,k,l ≤ n

nC4 = n!/ (4! (n-4!)) = n(n-1)(n-2)(n-4)/24



* Comp 555 Spring 2015 26

Least-Squares Distance Phylogeny Problem

• If the distance matrix D is NOT additive, then we look for a tree T 
that approximates D the best:

               Squared Error :   ∑i,j (dij(T) – Dij)
2

• Squared Error is a measure of the quality of the fit between 
distance matrix and the tree: we want to minimize it.

• Least Squares Distance Phylogeny Problem: finding the best 
approximation tree T for a non-additive matrix D.



* Comp 555 Spring 2015 27

UPGMA

• Unweighted Pair Group Method with Arithmetic 
Mean (UPGMA)

• UPGMA is a hierarchical clustering algorithm:
– assigns the distance between clusters to be 

the average pairwise distance
– assigns a height to every vertex in the tree, 

that is midway between the cluster distances



* Comp 555 Spring 2015 28

UPGMA’s Weakness

• The algorithm produces an ultrametric rooted 
tree : the distance from the root to every leaf is 
the same

• UPGMA models a constant molecular clock: 
– all species represented by the leaves in the tree
– assumed to coexist at t=0 and to have accumulated 

mutations (and thus evolve) at the same rate.  

• In reality the assumptions of UPGMA are seldom 
true, but they are frequently approximately true.



“Balanced” Cluster Merging 

* Comp 555 Spring 2015 29

C1 C2

d12

C12

C1
C2 C3

C123

½ d3(12)½ d12

1 4 32

UPGMA generates 
trees like this

2

3

4
1

But never 
trees like this



* Comp 555 Spring 2015 30

Clustering in UPGMA

Given two disjoint clusters Ci, Cj of sequences,
                      

Note that if Ck = Ci ∪ Cj, then the distance to 
another cluster Cl is:



* Comp 555 Spring 2015 31

UPGMA Algorithm

Initialization:
Assign each xi to its own cluster Ci
Define one leaf per sequence, each at height 0

Iteration:
Find two clusters Ci and Cj such that dij is min
Let Ck = Ci ∪ Cj
Add a vertex connecting Ci, Cj and place it at height dij /2
Delete Ci and Cj

Termination:
When a single cluster remains



* Comp 555 Spring 2015 32

UPGMA Algorithm (cont’d)

• 1   • 4

• 5• 2         • 3

1 4 2 3 5



Comp 555 Spring 2021 33

What will be covered on Final

• The Final will focus on material since 
the midterm, but since the course 
builds upon topics you may be asked 
to draw upon knowledge from the 
first half of the course

• Exam will be designed for 2 hrs 
(~15 questions), but you will have 
the entire 3 hrs to complete it.

• Make sure that your ONYEN and PID 
are correctly filled in on your exam's 
signature cell!

• Don't leave questions unanswered.

Dynamic programming
Sequence Alignment
Divide and Conquer
Peptide Assembly
Hidden Markov Models
Genome Rearrangements
Randomized Algorithms



Comp 555 Spring 2021 34

Studying for the Exam

• Lecture slides
• Lecture notebooks
• Problem sets



Comp 555 Spring 2021 35

It's Over

• Final Thursday, 5/5
– noon - 3pm
– Be sure to sign into zoom
– Open book, open notes,

open internet, online
– Will focus on material 

since midterm
– Final Study session:

• Thursday 4/28,  2:00-3:15pm



36


