
Comp 555 - BioAlgorithms - Spring 2022

Randomized Algorithms

● You have until Midnight

Thursday to complete

PS#6

● Final Study session

Thursday April 28

(2:00-3:15)?

Comp 555 Spring 2022 2

Randomized Algorithms

• Randomized algorithms incorporate random,
rather than deterministic, decisions

• Commonly used in situations
where no exact and/or fast
algorithm is known

• Works for algorithms that behave well on typical
data, but poorly in special cases

• Main advantage is that no input can reliably
produce worst-case results because the
algorithm runs differently each time.

Comp 555 Spring 2022 3

Select

• Select(L, k) finds the kth smallest element in L
• Select(L,1) find the smallest…

– Well known O(n) algorithm

• Select(L, len(L)/2) find the median…
– How?
– median = sorted(L)[len(L)/2] 🡪 O(n logn)

• Can we find medians, or 1st quartiles in O(n)?

minv = HUGE
for v in L:
 if (v < minv):
 minv = v

Comp 555 Spring 2022 4

Select Recursion

• Select(L, k) finds the kth smallest element in L
– Select an element m from unsorted list L and

partition L the array into two smaller lists:

 Llo - elements smaller than m
and

 Lhi - elements larger than m

if (len(Llo) >= k) then
 Select(Llo, k)

elif (k > len(Llo) + 1) then
 Select(Lhi, k – (len(Llo) + 1))

else m is the kth smallest element

Comp 555 Spring 2022 5

Example of Select(L, 5)

Given an array: L = { 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 }

Step 1: Choose the first element as m

 L = { 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 }

Our Selection

Comp 555 Spring 2022 6

Example of Select(L,5) (cont’d)

Step 2: Split the array into Llo and Lhi

 Llo = { 3, 2, 4, 5, 1, 0 }

L = { 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 }

 Lhi = { 8, 7, 9 }

Comp 555 Spring 2022 7

Example of Select(L,5) (cont’d)

Step 3: Recursively call Select on either Llo or Lhi
until len(Llo)+1 = k, then return m.
len(Llo) > k = 5 🡪 Select({ 3, 2, 4, 5, 1, 0 }, 5)

m = 3

Llo = { 2, 1, 0 } Lhi = { 4, 5 }

m = 4
Llo = { empty }, Lhi = { 5 }

k = 5 > len(Llo) +1 🡪 Select({4, 5 }, 5 - 3 - 1)

k = 1 == len(Llo) + 1 🡪 return 4

Comp 555 Spring 2022 8

Select Code

● How fast?
● Is it really any better than sorting, and selecting?

Comp 555 Spring 2022 9

Select with Good Splits

• Runtime depends on our selection of m:

- A good selection will split L evenly such that

|Llo | = |Lhi |= |L|/2

- The recurrence relation is:
T(n) = T(n/2)

 n + n/2 + n/4 + n/8 + n/16 + ….= 2n 🡪 O(n)
Same as search
for minimum

Comp 555 Spring 2022 10

Select with Bad Splits
However, a poor selection will split L unevenly and in the

worst case, all elements will be greater or less than m so
that one Sublist is full and the other is empty.

For a poor selection, the recurrence relation is
T(n) = T(n-1)

In this case, the runtime is O(n2).

Our dilemma:
O(n) or O(n2),
depending on the list… or O(n log n) independent of it

I could have sorted
first and done better

Comp 555 Spring 2022 11

Select Analysis (cont’d)

• Select seems risky compared to Sort
• To improve Select, we need to choose m

to give good ‘splits’
• It can be proven that to achieve O(n) running

time, we don’t need a perfect splits, just
reasonably good ones.

• In fact, if both subarrays are at least of size n/4,
then running time will be O(n).

• This implies that half of the choices of m make
good splitters.

Comp 555 Spring 2022 12

A Randomized Approach

• To improve Select, randomly select m.
• Since half of the elements will be good splitters,

if we choose m at random we will get a 50%
chance that m will be a good choice.

• This approach will make sure that no matter
what input is received, the expected running
time is small.

Randomized Select

Comp 555 Spring 2022 13

Comp 555 Spring 2022 14

RandomizedSelect Analysis

• Worst case runtime: O(n2)
• Expected runtime: O(n).
• Expected runtime is a good measure of the

performance of randomized algorithms, often
more informative than worst case runtimes.

• Worst case runtimes are rarely repeated
• RandomizedSelect always returns the correct

answer, which offers a way to classify
Randomized Algorithms.

Comp 555 Spring 2022 15

Types of Randomized Algorithms

• Las Vegas Algorithms – always produce the
correct solution (i.e. randomizedSelect)

• Monte Carlo Algorithms – do not always return
the correct solution.

 Of course, Las Vegas Algorithms are always
preferred, but they are often hard to come by.

Comp 555 Spring 2022 16

Gibbs Sampling
• RandomProfileMotifSearch is probably not

the best way to find motifs. Depends on
random guesses followed by a greedy
optimization procedure.

• Gibbs Sampling estimates a distribution of
each variable in turn, conditional on the
current values of the other variables.

• However, we can improve the algorithm by
introducing Gibbs Sampling, an iterative
procedure that discards one k-mer’s
contribution to the profile distribution at each
iteration and replaces it with a new one.

• Gibbs Sampling starts out slowly but chooses
new k-mers with increasing the odds that it
will improve the current solution.

Comp 555 Spring 2022 17

How Gibbs Sampling Works
1) Randomly choose starting positions

 s = (s1,...,st) and form the set of k-mers associated
 with these starting positions.
 2) Randomly choose one of the t sequences.

3) Create a profile P from the remaining t -1 sequences.
4) For each position in the removed sequence,
 calculate the probability that the k-mer starting at
 that position was generated by P.
5) Choose a new starting position for the selected sequence
 at random based on the probabilities calculated in step 4.
6) Repeat steps 2-5 until there is no improvement

Comp 555 Spring 2022 18

Gibbs Sampling: an Example
Input:

t = 5 sequences, motif length l = 8

1. GTAAACAATATTTATAGC
2. AAAATTTACCTCGCAAGG
3. CCGTACTGTCAAGCGTGG
4. TGAGTAAACGACGTCCCA
5. TACTTAACACCCTGTCAA

Comp 555 Spring 2022 19

Gibbs Sampling: an Example

1) Randomly choose starting positions,
s=(s1,s2,s3,s4,s5) in the 5 sequences:

s1=7 GTAAACAATATTTATAGC
s2=11 AAAATTTACCTTAGAAGG
s3=9 CCGTACTGTCAAGCGTGG
s4=4 TGAGTAAACGACGTCCCA
s5=1 TACTTAACACCCTGTCAA

Comp 555 Spring 2022 20

Gibbs Sampling: an Example

2) Choose one of the sequences at random:
Sequence 2: AAAATTTACCTTAGAAGG

 s1=7 GTAAACAATATTTATAGC
s2=11 AAAATTTACCTTAGAAGG
s3=9 CCGTACTGTCAAGCGTGG
s4=4 TGAGTAAACGACGTCCCA
s5=1 TACTTAACACCCTGTCAA

Comp 555 Spring 2022 21

Gibbs Sampling: an Example
2) Choose one of the sequences at random:

Sequence 2: AAAATTTACCTTAGAAGG

 s1=7 GTAAACAATATTTATAGC

s3=9 CCGTACTGTCAAGCGTGG
s4=4 TGAGTAAACGACGTCCCA
s5=1 TACTTAACACCCTGTCAA

Comp 555 Spring 2022 22

Gibbs Sampling: an Example

3) Create profile P from l-mers in remaining 4 sequences:

1 A A T A T T T A
3 T C A A G C G T

4 G T A A A C G A

5 T A C T T A A C

A 1/4 2/4 2/4 3/4 1/4 1/4 1/4 2/4

C 0 1/4 1/4 0 0 2/4 0 1/4

T 2/4 1/4 1/4 1/4 2/4 1/4 1/4 1/4

G 1/4 0 0 0 1/4 0 3/4 0
Consensus

String
T A A A T C G A

Comp 555 Spring 2022 23

Gibbs Sampling: an Example

4) Calculate the prob(a|P) for every possible 8-mer
in the removed sequence:

 Strings Highlighted in Red prob(a|P)

AAAATTTACCTTAGAAGG .000732
AAAATTTACCTTAGAAGG .000122
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG .000183
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0

Comp 555 Spring 2022 24

Gibbs Sampling: an Example

5) Create a distribution of probabilities of
k-mers prob(a|P), and randomly select a new
starting position based on this distribution.

Starting Position 1: prob(AAAATTTA | P) = .706

Starting Position 2: prob(AAATTTAC | P) = .118

Starting Position 8: prob(ACCTTAGA | P) = .176

A) To create this distribution, divide each
probability prob(a|P) by the total:

Comp 555 - Spring 2022 Comp 555 Spring 2022 25

Gibbs Sampling: an Example

 B) Select a new starting position at random
according to computed distribution:

P(selecting starting position 1): .706
P(selecting starting position 2): .118
P(selecting starting position 8): .176

t = random.random()
if (t < .706):
 # use position 1
elif (t < (.706 + .118)):
 # use position 2
else:
 # use position 8

Comp 555 Spring 2022 26

Gibbs Sampling: an Example
Assume we select the substring with the highest
probability – then we are left with the following
new substrings and starting positions.

s1=7 GTAAACAATATTTATAGC
s2=1 AAAATTTACCTCGCAAGG
s3=9 CCGTACTGTCAAGCGTGG
s4=5 TGAGTAATCGACGTCCCA
s5=1 TACTTCACACCCTGTCAA

Comp 555 Spring 2022 27

Gibbs Sampling: an Example
6) We iterate the procedure again with the above

starting positions until we cannot improve the
score any more.

Comp 555 Spring 2022 28

Gibbs Sampling in Python

Gibbs Sampling Performance

Comp 555 Spring 2022 29

Comp 555 Spring 2022 30

Gibbs Sampler in Practice

• Fewer profile searches, O(n), in exchange for updating
the profile, O(kt), more often (tradeoff which is easier)

• Gibbs sampling can converge much faster than a fully
randomized approach

• Gibbs sampling is more likely to converge to locally
optimal motifs rather a fully randomized algorithm.

• Like the fully Randomized Algorithm it must be run
with many randomly chosen initial seeds to achieve
good results.

Comp 555 Spring 2022 31

Next Time

