Comp 555 - BioAlgorithms - Spring 2022

"Really? - my people always say multiply and conquer."

Divide and Conquer Algorithms

The Essence of Divide and Conquer

- Divide problem into sub-problems
- Conquer by solving subproblems recursively.
- If the subproblems are small enough, solve them in brute force fashion
- Combine the solutions of sub-problems into a solution of the original problem
- This is the tricky part

Divide and Conquer Applied to Sorting

Problem

- Given an unsorted array of items

$\begin{array}{llllllll}5 & 2 & 4 & 7 & 1 & 3 & 2 & 6\end{array}$

- Reorder them such that they are in a non-decreasing order

$$
\begin{array}{llllllll}
1 & 2 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}
$$

Merge Sort

Step 1. The Divide Phase

$\log _{2}(n)$ divisions to split an array of size n into single elements

Merge Sort

Merging

- 2 arrays of size 1 can be easily merged to form a sorted array of size 2

- Move the smaller first value of the two arrays to the next slot in the merged array. Repeat.
- 2 sorted arrays of size p and q can be merged in $O(p+q)$ time to form a sorted array of size $p+q$

Merge Sort

Step 2. Conquer Phase

$O(n) \downarrow$
\downarrow

| 2 | 4 | 5 | 7 | 1 | 2 | 3 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\log _{2}(n)$ iterations, each iteration takes $O(n)$ time, for a total time $O\left(n \log _{2}(n)\right)$

\[

\]

Now back to Biology

All algorithms for aligning a pair of sequences thus far have required quadratic memory

The tables used by the dynamic programming method

- Space complexity for computing alignment path for sequences of length n and m is $O(n m)$
- We kept a table of all scores and arrival directions in memory to reconstruct the final best path (backtracking)

Computing Alignments with Linear Memory

- If appropriately ordered, the space needed to compute just the score can be reduced to $\mathrm{O}(\mathrm{n})$
- For example, we only need the previous column to calculate the current column, and we can throw away that previous column once we're done using it

Recycling Columns

Only two columns of scores are needed at any given time

memory for column 2 is used to calculate column 4

An Aside

Suppose that we reverse the source and destination of our Manhattan Tour

- Does the path with the most attractions change?

More Aside

Now suppose that we made two tours

- One from the source towards the destination
- A second from the destination of towards the source
- And we stop both tours at the middle column

- Can we combine these two separate solutions to find the overall best score?

A Divide \& Conquer Alignment Approach

- We want to calculate the longest path from $(0,0)$ to (n, m) that passes through $(\mathrm{i}, \mathrm{m} / 2)$ where i ranges from 0 to n and represents the i-th row
- Define Score(i) as the score of the path from $(0,0)$ to (n, m) that passes through vertex $(i, m / 2)$

Finding the Midline

Define (mid,m/2) as the vertex where the best score crosses the middle column.

To get the total score on the vertices of the $\mathrm{m} / 2$ column we just add together the scores from $(0,0)$ to $(\mathrm{m} / 2, \mathrm{i})$ and (m, n) to $(\mathrm{m} / 2, \mathrm{i})$

- How hard is the problem compared to the original DP approach?
- What does it lack?

We know the Best Score

How do we find the best path?

- We actually know one vertex on our path, (m/2, mid).
- How do we find more?

The greatest sum on this column is our overall best score.

Our solution should pass through this vertex.

What about ties?

- Hint: Knowing mid actually constraints where the paths can go

A Mid's Mid

We can now solve for the paths from $(0,0)$ to $(\mathrm{m} / 2, \mathrm{mid})$ and $(\mathrm{m} / 2, \mathrm{mid})$ to (m, n)

And Mid-Mid's Mids (recursively)

And repeat this process until the path is from (i, j) to (i, j)

Isn't this equivalent to finding a path without using a backtracking matrix?

Algorithm's Performance

- On the first level, the algorithm fills every entry in the matrix, thus it does $\mathrm{O}(\mathrm{nm})$ work, just like our original DP.

Work done on a second pass

- On second level, the algorithm fills half the entries in the matrix, thus it does $\mathrm{O}(\mathrm{nm}) / 2$ work

Work done on an Alternate second pass

- This is true regardless of what index, i, that the max score is found on

Work done on a third pass

- On the third pass, the algorithm fills a quarter of the entries in the matrix, thus it does $\mathrm{O}(\mathrm{nm}) / 4$ work

Sum of a Geometric Series

Total Space: $\mathrm{O}(\mathrm{n})$ for score computation, $\mathrm{O}(\mathrm{n}+\mathrm{m})$ to store the optimal alignment

- Time complexity is still $\mathrm{O}(\mathrm{mn})$. Actually, we expect it to take about twice as long as the approach using $O(m n)$ space

Divide-and-Conquer Alignments Summary

- We can now align very large sequences without fear of running out of memory
- Smaller of $2 m$ and $2 n$ memory space
- A backtracking matrix is avoided altogether (must reorder midpoints into a path)
- Also, constraining an alignment to match a specific pair of symbols or pair of subsequences reduces the size of the overall DP, so domain knowledge can dramatically impact alignment speed and space requirements.
- Constraints save computation by avoiding finding scores and backtracks for large regions of the solution space

Next Time

- A closer look into Protein Sequencing
- How the molecular weights of peptide sequences can be used to untangle a protein's sequence

