
Comp 555 - BioAlgorithms - Spring 2022

Sequence Alignment

● How our Manhattan Tour

relates to sequences

● Problem set #3 due tonight

● Look for Problem set #4

later Tonight

● Have a good break

Comp 555 - Spring 2022

Comparing Sequences

● What makes two sequences similar?
● What is the best measure of similarity?
● Consider the two DNA sequences v and w :

 v: TAGACAAT
 w: AGAGACAT
 11111100 = 6

● The Hamming distance, dH(v, w) = 6, is large but the sequences seem to have more similarity
● What if we allowed for insertions and deletions?

2

Comp 555 - Spring 2022

Allowing Insertions and Deletions

● By shifting each sequence over one position:

 v: _TAGACAAT
 w: AGAGACAT_
 110000011 = 4

● The edit distance: dH(v, w) = 3.
● Hamming distance neglects insertions and deletions

Shifts and gaps:

v: _TAGACAAT
w: AGAGAC_AT
 110000100 = 3

3

Another one:

v: T_AGACAAT
w: AGAGACA_T
 110000010 = 3

Comp 555 - Spring 2022

Edit Distance

● Vladimir Levenshtein introduced the notion of an
“edit distance” between two strings as the minimum
number of elementary operations (insertions,
deletions, and substitutions) to transform one string
into the other in 1965.

● dL(v,w) = Minimum number of elementary operations
to transform v → w

● Computing Hamming distance is a trivial task

● Computing edit distance is less trivial

4

Vladimir Levenshtein
1935 - 2017

Comp 555 - Spring 2022

Edit Distance: Example
 TGCATAT → ATCCGAT in 5 steps

 TGCATAT → (DELETE last T)
 TGCATA → (DELETE last A)
 TGCAT → (INSERT A at front)
 ATGCAT → (SUBSTITUTE C for G)
 ATCCAT → (INSERT G before last A)
 ATCCGAT (Done)

What is the edit distance? 5? (Recall it has to be the minimum)

5

Comp 555 - Spring 2022

Edit Distance: Example (2nd Try)
 TGCATAT → ATCCGAT in 4 steps

 TGCATAT → (INSERT A at front)
 ATGCATAT → (DELETE 2nd T)
 ATGCAAT → (SUBSTITUTE G for 2nd A)
 ATGCGAT → (SUBSTITUTE C for 1st G)
 ATCCGAT (Done)

But is 4 the minimum edit distance? Is 3 possible?

● Edit sequences are invertible, i.e given v → w, one can generate w → v, without recomputing
● A little jargon: Since the effect of insertion in one string can be accomplished via a deletion in the

other string these two operations are correlated. Often algorithms will consider them together as a
single operation called INDEL

6

Comp 555 - Spring 2022

An Aside: Longest Common Subsequence

● A special case of alignment where only matches, insertions, and deletions are allowed
● A variant of Edit distance, sometimes called LCS distance, where only indels are allowed
● A subsequence need not be contiguous, but the symbol order must be preserved

Ex. If v = ATTGCTA then AGCA and TTTA are subsequences of v, but TGTT and ACGA are not
● All substrings of v are subsequences, but not vice versa
● Edit distance, dLCS, is related to the length of the LCS, s, by the following relationship:

dLCS(u,w) = len(v) + len(w) – 2s(u,w)

7

Example:
ANUNCLEIKE
UNCBEATDUKE
 len LCS

 anUNC_lE____iKE 10 - 6 = 4
__UNCb_Eatdu_KE 11 - 6 = 5

Comp 555 - Spring 2022

LCS as a Manhattan Tour (Dynamic Program)

There are similarities between the LCS and MTP

● All possible possible alignments can be represented as a path
from the string’s beginning (source) to its end (destination)

● Horizontal edges add gaps in v
● Vertical edges add gaps in w
● Diagonal edges are a match
● Notice that we’ve only included valid diagonal edges for

"matches" in our graph

● An maximum LCS is a path from (ε,ε) to the end
of both strings that matches the most bases
(a.k.a. a Manhattan tour)

8

*

*

*

*

*
*

*
**

*

*
*

*

Comp 555 - Spring 2022

The "Space" of All Alignments

● Introduce coordinates for the grid
● All valid paths from the source to the destination represent

some alignment

 0 1 2 2 3 4 5 6 7 7
 v A T _ G T T A T _
 w A T C G T _ A _ C
 0 1 2 3 4 5 5 6 6 7

● Path:
(0,0), (1,1), (2,2), (2,3), (3,4), (4,5), (5,5), (6,6), (7,6), (7,7)

9

Comp 555 - Spring 2022

Alternate Alignment

● Introduce coordinates for the grid
● All valid paths from the source to the destination represent

some alignment

 0 1 2 2 3 4 5 6 6 7
 v A T _ G T T A _ T
 w A T C G _ T A C _
 0 1 2 3 4 4 5 6 7 7

● Path:
(0,0), (1,1), (2,2), (2,3), (3,4), (4,4), (5,5), (6,6), (6,7), (7,7)

10

Comp 555 - Spring 2022

Even Bad Alignments

● Introduce coordinates for the grid
● All valid paths from the source to the destination represent

some alignment

 0 0 0 0 0 0 1 2 3 4 5 6 7 7
 v _ _ _ _ _ A T G T T A T _
 w A T C G T A _ _ _ _ _ _ C
 0 1 2 3 4 5 6 6 6 6 6 6 6 7

● Path:
 (0,0), (0,1), (0,2), (0,3), (0,4), (0,5), (1,6),
 (2,6), (3,6), (4,6), (5,6), (6,6), (7,6), (7,7)

11

Comp 555 - Spring 2022

What makes a good alignment?

● Using as many diagonal segments, when they
correspond to matches, as possible. Why?

● The end of a good alignment from (j...k) begins with a
good alignment from (i..j)

● Same as Manhattan Tourist problem, where the sites
are only on the diagonal streets!

● Set diagonal street weights = 1, and horizontal and
vertical weights = 0

12

Comp 555 - Spring 2022

LCS: Dynamic Program

13

Comp 555 - Spring 2022

Step 1
Initialize 1st row and 1st column to all zeroes.

● Note intersections/vertices are cells/entries of this matrix

14

The values in
this matrix
represent the
intersections
of the graph
we used
before. Thus, it
is (N+1) x (M+1)

Comp 555 - Spring 2022

Step 2
Evaluate recursion for next row and/or next column

15

Comp 555 - Spring 2022

Step 3
Continue recursion for next row and/or next column

16

Comp 555 - Spring 2022

Step 4
Then one more row and/or column

17

Comp 555 - Spring 2022

Step 5
And so on...

18

Comp 555 - Spring 2022

Step 6
And so on...

19

Comp 555 - Spring 2022

Step 7
Getting closer

20

Comp 555 - Spring 2022

Step 8
Until we reach the last row and column

21

Comp 555 - Spring 2022

Finally
We reach the end, which corresponds to an LCS of length 5

Our answer includes both an optimal score, and a
path back to both the LCS and an alignment

22

w = ATCGT_A_C
v = AT_GTTAT_
 len(LCS) = 5

Comp 555 - Spring 2022

LCS Code
Let's see how well the code matches the approach we sketched out…

● The same score matrix that we found by hand
● "backtrack" keeps track of the "arrow" used, 1 is ↓, 2 is →, 3 is ↘

23

Here is where
the "edges" of
the graph are
considered. The
graph is implicit.

The tableau is made one larger than you'd expect
because it simplifies the edge cases.

Comp 555 - Spring 2022

Backtracking

In our example we used arrows {↓, →, ↘}, which were represented in our matrix as {1,2,3} respectively. This
numbering is arbitrary, except that it does break ties in our implementation
(matches > w deletions > w insertions).

Now we need code that finds a path from the end of our strings to the beginning using our arrow matrix

24

Comp 555 - Spring 2022

Code to extract an answer
A simple recursive LCS() routine to return along the path of arrows that led to our best score.

25

Comp 555 - Spring 2022

But that’s not an alignment
● Technically correct, ATGTA is the LCS, But an alignment accounts for both

those letter used in the LCS as well as those skipped

w = ATcGT_A_c
v = AT_GTtAt_

● Notice that LCS() needed only one of v or w since both contain the LCS
● How might we get an alignment instead of just the LCS

26

This is a proper
alignment of the
sequences w and v. It
accounts for all letters
in both sequences

Comp 555 - Spring 2022

An alignment of v and w

27

Once again, it is a
recursive function. That
handles one arrow on
each call.

Comp 555 - Spring 2022

From an LCS to an Alignment
Longest Common Subsequence (LCS) is a special case of alignment
1. Construct a graph
2. Define a recurrence relation
3. Solve it for all paths from (0,0) to (n,m)
4. Used a dynamic program where

each step relies only on solutions
already computed and saved in our
tableau

How about alternate recurrence relations?

28

This term allows
us to take a few
"diagonals", even if
the row and
column letters
don't match.

What if we want to change these
reward/penalty values? Perhaps we'd
prefer an INDEL over a mismatch

Comp 555 - Spring 2022

A more "general purpose" alignment graph
Now consider a more uniform "Manhattan"
There are four ways to
reach an intersection

From the north,
From the east,
From a diagonal at every intersection
 with different scores for a
 "match" and a "mismatch"

29

𝜀 A T T C T C A A T G G A
𝜀
A
T
G
C
T
C
A
A
T
G
G
A

Comp 555 - Spring 2022

Alignment using a Scoring Matrix
● Rather edit distance one can use a table with costs for every symbol

aligned to any other
● Scoring matrices allow alignments to consider biological constraints
● Alignments can be thought of as two sequences that differ due to mutations.
● Some types of mutations are more common, or have little or no effect on function,

therefore some mismatch penalties, δ(vi, wj), should be less harsh than others.

Example: DNA transitions and transversions

● Like LCS, we want to maximize sequence matches, so each should have a positive
score (diagonal of scoring matrix)

● Unlike LCS, we need to allow for occasional mismatches, as well as INDELs.
● The 4 DNA nucleotides come in two types, purines (A and G), which have two-rings

and pyrimidines, (C and T) which have only one.
● Mutations within types are far more common than mutations between types,

despite there being twice as many. This higher mutation rate can be encoded as a
smaller substitution penalty.

● Insertions and deletions are even less common that any substitution, thus they
have even higher penalties.

30

δ A C G T _

A 1 -2 -1 -2 -3

C -2 1 -2 -1 -3

G -1 -2 1 -2 -3

T -2 -1 -2 1 -3

_ -3 -3 -3 -3

A G

T C

Comp 555 - Spring 2022

Impact on Alignment
Graph includes all diagonal edges, but many
with negative weights

 Generalized recurrence relation

31

ε A C A T T A G
ε

A

C

T

A

G

si,j = max

si-1,j-1 + δ(vi,wj)

si-1,j + δ(vi, _)

si,j-1 + δ(_, wj)

Needleman–Wunsch Alignment Algorithm

Comp 555 - Spring 2022

Global Alignment with a scoring matrix

32

We call this sort of alignment
"GLOBAL" because it
considers aligning every
character in both strings. In
other words every character
contributes somehow to the
final score.

Comp 555 - Spring 2022

Next Time
● Global vs. Local alignments
● Affine gap penalties
● Aligning more than

Two sequences

33

