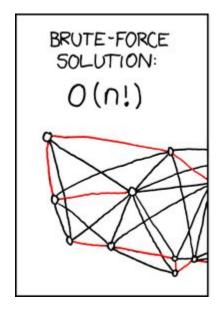
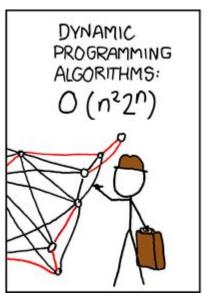
Comp 555 - BioAlgorithms - Spring 2022





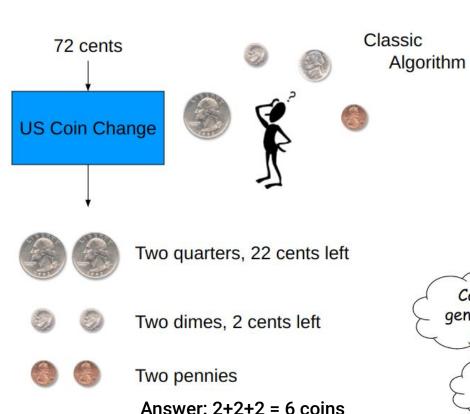
- MIDTERM NEXT THURSDAY
- STUDY SESSION NEXT TUESDAY NIGHT?

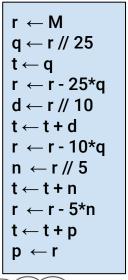
Adventures in Dynamic Programming

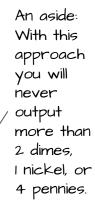
Algorithm Correctness

- An algorithm is correct only if it produces correct result for every valid input instance
 - An algorithm is incorrect answer if it cannot produce a correct result for one or more input instances,
- Coin change problem
 - o **Input:** an amount of money M in cents, and a list of coin denominations $[c_1, c_2, ..., c_n]$
 - Output: the *smallest number of coins*, t, that add to *M* (may not be unique)
- US coin change problem

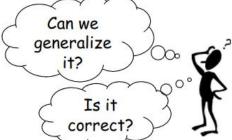
US Coin Change







How do you know this is true?



Change Problem

- Input:
 - o an amount of money M
 - o an array of denominations $c = (c_1, c_2, ..., c_d)$ in order of decreasing value
- Output: the smallest number of coins



Comp 555 - Spring 2022 4

A "Greedy" change approach

 Key idea: Use as many of the largest available coin denomination so long as the sum is less than or equal to the change amount

```
In [3]:
            def greedyChange(amount, denominations):
                 # Goal is to produce the fewest coins to achieve
                # given target "amount"
                # Strategy: Give as many of the largest coin
                # denomination that is less than amount.
                solution = []
                for coin in denominations:
                     i = amount // coin
                                              # truncating integer divide
                     solution.append(i)
                     amount -= coin * i
         10
                 return solution
        11
            s1 = greedyChange(72, [25, 10, 5, 1])
            print(s1, sum(s1))
            s2 = greedyChange(40, [25, 10, 5, 1])
        16 print(s2, sum(s2))
            s3 = greedyChange(40, [25, 20, 10, 5, 1])
            print(s3, sum(s3))
        [2, 2, 0, 2] 6
        [1, 1, 1, 0] 3
        [1, 0, 1, 1, 0] 3
```

Comp 555 - Spring 2022 5

But first a trick

- How to iterate through products like itertools.products()
- How to count

```
: # A trick for creating counting sequences without recursion
  # Idea, add one to the first digit until the base is reached
  # if the base is reached add one to the next digit and test
  # and so on
  base = 3
  digits = 3
  count = [0 for i in range(digits)]
  while True:
      print(count)
      for i in range(digits):
          count[i] += 1
          if (count[i] < base):</pre>
              break
          count[i] = 0
      if (sum(count) == 0):
          break
```

```
[0, 0, 0]
[1, 0, 0]
[2, 0, 0]
[0, 1, 0]
[1, 1, 0]
[2, 1, 0]
[0, 2, 0]
[1, 2, 0]
[2, 2, 0]
[0, 0, 1]
[1, 0, 1]
[2, 0, 1]
[0, 1, 1]
[1, 1, 1]
[2, 1, 1]
[0, 2, 1]
[1, 2, 1]
[2, 2, 1]
[0, 0, 2]
[1, 0, 2]
[2, 0, 2]
[0, 1, 2]
[1, 1, 2]
[2, 1, 2]
[0, 2, 2]
[1, 2, 2]
[2, 2, 2]
```

Another Approach?

Like

base

counting but every digit has a

different

Let's bring back brute force

Wall time: 672 ms

- Test every coin combination (where each denomination is less than 100) to see if it adds up to our target
- Is there exhaustive search algorithm?

CPU times: user 688 ms, sys: 0 ns, total: 688 ms

```
In [8]:
         1 def exhaustiveChange(amount, denominations):
                                                                                                                  25
                                                                                                  [0,1,2,3]
                 bestN = 100
                count = [0 for i in range(len(denominations))]
                                                                                                  [0,1,2,3,4]
                                                                                                                  20
                 while True:
                                                                                                  [0,...,9]
                                                                                                                  10
                     for i, coinValue in enumerate(denominations):
                         count[i] += 1
                                                                                                  [0,...,19]
                         if (count[i]*coinValue < 100):</pre>
                                                                                                  [0,...,99]
                             break
                                                                                                                  100
                         count[i] = 0
                     n = sum(count)
         10
         11
                     if n == 0:
                                                                                                  4*5*10*20*100 = 400000
         12
                         break
                     value = sum([count[i]*denominations[i] for i in range(len(denominations))])
                     if (value == amount):
         14
         15
                         if (n < bestN):</pre>
                             solution = [count[i] for i in range(len(denominations))]
         16
         17
                             bestN = n
         18
                 return solution
         19
         20 %time print(exhaustiveChange(40, [25, 20, 10, 5, 1]))
        [0, 2, 0, 0, 0]
```

Correct, but costly

- Our algorithm now gets the right answer for every value 1..100
- It must, because it considers every possible answer (that's the good thing about brute force)
- There is a downside though

Other tricks?

A Branch-and-bound algorithm, almost identical to brute force

```
def branchAndBoundChange(amount, denominations):
        bestN = amount
        count = [0 for i in range(len(denominations))]
        while True:
            for i, coinValue in enumerate(denominations):
                count[i] += 1
                if (count[i]*coinValue < amount):</pre>
                                                               # Set upper bound to amount rather than 100
                    break
                count[i] = 0
10
            n = sum(count)
11
            if n == 0:
12
                break
13
            if (n > bestN):
                                                               # don't compute the amount if there are too many coins
14
                continue
            value = sum([count[i]*denominations[i] for i in range(len(denominations))])
16
            if (value == amount):
                if (n < bestN):</pre>
17
18
                    solution = [count[i] for i in range(len(denominations))]
19
                    bestN = n
20
        return solution
22 %time print(branchAndBoundChange(40, [13,11,7,5,3,1]))
[0, 3, 1, 0, 0, 0]
CPU times: user 317 ms, sys: 0 ns, total: 317 ms
Wall time: 299 ms
```

BTW, this is an iterative branch-and-bound... meaning that branch-and-bound can be implemented without recursion

..Correct, and it works well for many cases, but can be as slow as an exhaustive search for some inputs (try 99).

Is there another Approach?

Tabulating Answers

- If it is costly to compute the answer for a given input, then there may be advantages to caching the result of previous calculations in a table
- This trades-off time-complexity for space
- How could we fill in the table in the first place?
- Run our best correct algorithm
- Can the table itself be used to speed up the process?

Amt	25	20	10	5	1	Amt	25	20	10	5	1
1¢					1	42¢		2			2
2¢	10 11				2	43¢		2			3
3¢				_	3	44¢		2			4
4¢					4	45¢		2		1	H
5¢	JG 31			1		46¢		2		1	1
6¢				1	1	47¢		2		1	2
7¢	0			1	2	48¢		2		1	3
8¢	2 2	-		1	3	49¢		2	S 10	1	4
9¢				1	4	50¢	2				
10¢	S 3		1	-		51¢	2				1
11¢	-		1		1	52¢	2				2

Solutions using a Table

- Suppose you are asked to fill-in the unknown table entry for 67¢
- It must differ from a previously known optimal result by at most one coin...
- So what are the possibilities?
 - BestChange $(67\c)$ = 1 + BestChange $(67\c)$ = 42\c), or
 - BestChange $(67\c)$ = 1 + BestChange $(67\c)$ = 47\c), or
 - BestChange $(67\c)$ = 1 + BestChange $(67\c)$ or
 - BestChange(67c) = 1 + BestChange(67-5 = 62c), or
 - BestChange(67¢) = 1 + BestChange(65-1 = 66¢)
- The minimum of these must be the right answer

Looks like a recursive definition. That gives me an idea!

A Recursive Coin-Change Algorithm


```
In [23]: def RecursiveChange(M, c):
             if (M == 0):
                 return [0 for i in range(len(c))]
             smallestNumberOfCoins = M+1
             for i in range(len(c)):
                 if (M >= c[i]):
                      thisChange = RecursiveChange(M - c[i], c)
                     thisChange[i] += 1
                     if (sum(thisChange) < smallestNumberOfCoins):</pre>
                          bestChange = thisChange
                          smallestNumberOfCoins = sum(thisChange)
             return bestChange
         %time print(RecursiveChange(40, [1,3,5,7,11,13]))
         [1, 0, 0, 0, 0, 3]
         CPU times: user 6min 43s, sys: 16 ms, total: 6min 43s
         Wall time: 6min 43s
```

Oops... it got slower. Why? (Not to mention, it found another "different" correct answer.)

Recursion Recalculations

- Recursion often results in many redundant calls
- Even after only two levels of recursion 6 different change values are repeated multiple times
- How can we avoid this repetition?
- Cache precomputed results in a table!

```
25 + Change(15)
Change(40) =
              25 + 10 + Change(5)
              25 + 5 + Change(10)
         20 + Change(20)
              20 + 20 + Change(0)
              20 + 10 + Change(10)
              20 + 5 + Change(15)
         10 + Change(30)
              10 + 25 + Change(5)
              10 + 20 + Change(10)
              10 + 10 + Change(20)
              10 + 5 + Change(25)
         5 + Change(35)
              5 + 25 + Change(15)
              5 + 20 + Change(10)
              5 + 10 + Change(25)
              5 + 5 + Change(30)
```

Back to Table Evaluation

- When do we fill in the values of our table?
- We could solve for change for every value from 1 up to M, then we'd be guaranteed to have found the best change for any value less than M when needed
- Thus, instead of just trying to find the minimal number of coins to change M cents, we attempt the solve the superficially harder problem of solving for the optimal change for all values from 1 to M

1c = [0,0,0,0,1]

2¢ = [0,0,0,0,2]

3c = [0,0,0,0,3]

Mc = [?,?,?,?,?]

Change via Dynamic Programming

The

contents of

change just

before the

return after

the first call

```
def DPChange(M, c):
In [21]:
              change = [[0 for i in range(len(c))]]
              for m in range(1,M+1):
                  bestNumCoins = m+1
                  for i in range(len(c)):
                      if (m >= c[i]):
                          thisChange = [x for x in change[m - c[i]]]
                          thisChange[i] += 1
                          if (sum(thisChange) < bestNumCoins):</pre>
                              bestCombination = [v for v in thisChange]
                              bestNumCoins = sum(thisChange)
                  change.append(bestCombination)
              return change[M]
          %time print(DPChange(40, [1,3,5,7,11,13]))
          %time print(DPChange(40, [1,3,5,7,11,13,17]))
          %time print(DPChange(40, [1,3,5,7,11,13,17,19]))
          %time print(DPChange(42, [13,11,7,5,3,1]))
```

- BruteForceChange() was O(d^M)
- DPChange() is O(Md)

0 [0, 0, 0, 0, 0, 0] 1 [1, 0, 0, 0, 0, 0] 7 [0, 0, 0, 1, 0, 0] 8 [1, 0, 0, 1, 0, 0] 10 [0, 1, 0, 1, 0, 0] 12 [1, 0, 0, 0, 1, 0] 13 [0, 0, 0, 0, 0, 1] 14 [1, 0, 0, 0, 0, 1] 15 [2, 0, 0, 0, 0, 1] 16 [0, 1, 0, 0, 0, 1] 17 [1, 1, 0, 0, 0, 1] 18 [0, 0, 1, 0, 0, 1] 19 [1, 0, 1, 0, 0, 1] 20 [0, 0, 0, 1, 0, 1] 21 [1, 0, 0, 1, 0, 1] 22 [0, 0, 0, 0, 2, 0] 23 [1, 0, 0, 0, 2, 0] 24 [0, 0, 0, 0, 1, 1] 25 [1, 0, 0, 0, 1, 1] 26 [0, 0, 0, 0, 0, 2] 27 [1, 0, 0, 0, 0, 2] 28 [2, 0, 0, 0, 0, 2] 29 [0, 1, 0, 0, 0, 2] 31 [0, 0, 1, 0, 0, 2] 32 [1, 0, 1, 0, 0, 2] 34 [1, 0, 0, 1, 0, 2] 35 [0, 0, 0, 0, 2, 1] 36 [1, 0, 0, 0, 2, 1] 37 [0, 0, 0, 0, 1, 2] 38 [1, 0, 0, 0, 1, 2] 39 [0, 0, 0, 0, 0, 3] 40 [1, 0, 0, 0, 0, 3]

A Hybrid Approach: Memoization

- Often we can simply modify a recursive algorithm to "cache" the result of previous invocations
- Filling in the table lazily as needed... as each call to progresses from M down to 1
- This "lazy evaluated" form of dynamic programming is often called "Memoization"

```
In [34]: | change = {}
                                                                     # This is a cache for saving bestChange[M]
             def MemoizedChange(M, c):
                 global change
                 if (M in change):
                                                                      # Check the cache first
                     return [v for v in change[M]]
                 if (len(change) == 0):
                                                                      # Initialize cache
                     change[0] = [0 for i in range(len(c))]
                 smallestNumberOfCoins = M+1
                 for i in range(len(c)):
                     if (M >= c[i]):
                         thisChange = MemoizedChange(M - c[i], c)
                         thisChange[i] += 1
                         if (sum(thisChange) < smallestNumberOfCoins):</pre>
                              bestChange = [v for v in thisChange]
                              smallestNumberOfCoins = sum(thisChange)
                 change[M] = [v for v in bestChange]
                                                                      # Add new M to cache
                 return bestChange
             %time print(MemoizedChange(40, [1,3,5,7,11,13]))
             [1, 0, 0, 0, 0, 3]
             CPU times: user 541 µs, sys: 0 ns, total: 541 µs
             Wall time: 477 µs
```

Comp 555 - Spring 2022 16

Dynamic Programming

- Dynamic Programming is a general technique for computing recurrence relations efficiently by storing partial or intermediate results
- Three keys to constructing a dynamic programming solution:
 - Formulate the answer as a recurrence relation.
 - 2. Consider all instances of the recurrence at each step
 - 3. Order evaluations so you will always have precomputed the needed partial results
- Memoization is an easy way to convert recursive solutions to a DP
- We'll see it again, and again

Next Time

- On to sequence alignment
- But first we'll learn how to navigate in Manhattan

