Comp 555 - BioAlgorithms - Spring 2022

- Problem set \#) HAS BEEN GRADED
- Problem set \#z is DUE ON THURSDAY. SUBMISSION PORTAL 15 OPEN
- Problem set \#3 WILL GO OUT SOON AFTERWARD.

Suffix Arrays and BWTs

A tweak to argsort()

- Recall argsort() from last time:

```
def argsort(input):
    return sorted(range(len(input)), key=input.__getitem__)
```

B = ["TAGACAT", "AGACAT", "GACAT", "ACAT", "CAT", "AT", "T"]
print(argsort(B))
[3, 1, 5, 4, 2, 6, 0]

- If we know that our input is suffixes from a single string
- the $\mathrm{i}^{\text {th }}$ suffix starts at index i
- thus we don't need to extract the suffixes, just use offsets

Comparing Suffixes in Place

The key idea here is that we don't need to explicitly create a list of suffixes, since they are part of the original text.

Original Order

Sort adjacent suffixes

Merge sorted pairs

Merge sorted halves

Constructing a Suffix Array

In [20]:

```
def suffixArray(string):
    return [i for i in sorted(range(len(string)), key=lambda x: string[x:])]
t = "amanaplanacanalpanama"
lambda? lambda is a
sa \(=\operatorname{suffixArray}(t)\)
\(\operatorname{print}(\mathrm{sa}) \quad[20,9,13,18,0,7,11,16,2,4,10,6,14,19,1,8,12,17,3,15,5]\)
for i in sa:
    print("\%2d: \%s" \% (i, t[i:]))
```

20: a
9: acanalpanama
13: alpanama
18: ama
0: amanaplanacanalpanama
7: anacanalpanama
11: analpanama
16: anama
2: anaplanacanalpanama
4: aplanacanalpanama
10: canalpanama
6: lanacanalpanama
14: lpanama
19: ma
1: manaplanacanalpanama
8: nacanalpanama
12: nalpanama
17: nama
: naplanacanalpanama
15: panama
5: planacanalpanama

```

\section*{Searching a Suffix Array}
- Searching a sorted list requires \(\mathrm{O}(\log (\mathrm{m}))\) comparisons using binary search
- Each comparison requires examining at most \(n\) symbols of the pattern
- Thus, searching is \(O(n \log (m))\)

In [6]: \(M\) def findFirst(pattern, text, suffixarray):
lo, hi = 0 , len(text)
while (lo < hi):
middle = (lo+hi)//2
if text[suffixarray[middle]:] < pattern:
lo = middle + 1
else:
hi = middle
return lo
first = findFirst("an", t, sa) print(t)
print(first, sa[first], t[sa[first]:])
```

[20, 9, 13, 18, 0, 7, 11, 16, 2, 4, 10, 6, 14, 19, 1, 8, 12, 17, 3, 15, 5]
20: a
9: acanalpanama
13: alpanama
18: ama
0: amanaplanacanalpanama
7: anacanalpanama
11: analpanama
16: anama
2: anaplanacanalpanama
4: aplanacanalpanama
10: canalpanama
6: lanacanalpanama
14: lpanama
19: ma
1: manaplanacanalpanama
8: nacanalpanama
12: nalpanama
17: nama
3: naplanacanalpanama
15: panama
5: planacanalpanama

```

\section*{Finding all Occurrences}

A variant to binary search which finds the last occurence of a pattern rather than the first. Only difference, uses "<=" instead of "<", but needs to trim string comparison to test for equality.
```

In [6]: def findLast(pattern, text, suffixarray):
lo, hi = 0, len(text)
while (lo < hi):
middle = (lo+hi)//2
if text[suffixarray[middle]:suffixarray[middle]+len(pattern)] <= pattern:
lo = middle + 1
else:
hi = middle
return lo
print(t)
last = findLast("an", t, sa)
print(first, last)
for suffix in sa[first:last]: \# recall "first" was found on the previous slide
print("%3d: %s" % (suffix, t[suffix:]))
print(last - first, "times")

```
amanaplanacanalpanama
59
7: anacanalpanama
11: analpanama
16: anama
2: anaplanacanalpanama
4 times

\section*{Longest repeated substring?}
- Given a suffix array, we can compute a helper data structure, called the Longest Common Prefix, LCP
```

In [5]:

```
```

def computeLCP(text, suffixarray):

```
def computeLCP(text, suffixarray):
    m = len(text)
    m = len(text)
    lcp = [0 for i in range(m)]
    lcp = [0 for i in range(m)]
    for i in range(1,m):
    for i in range(1,m):
        u = suffixarray[i-1]
        u = suffixarray[i-1]
        v = suffixarray[i]
        v = suffixarray[i]
        n = 0
        n = 0
        while text[u] == text[v]:
        while text[u] == text[v]:
            n += 1
            n += 1
            u += 1
            u += 1
            v += 1
            v += 1
            if (u >= m) or (v >= m):
            if (u >= m) or (v >= m):
                break
                break
        lcp[i] = n
        lcp[i] = n
    return lcp
    return lcp
lcp = computeLCP(t, sa)
lcp = computeLCP(t, sa)
print("SA, LCP,Suffix")
print("SA, LCP,Suffix")
for i, j in enumerate(sa):
for i, j in enumerate(sa):
    print("%2d: %2d %s" % (j, lcp[i], t[j:]))
    print("%2d: %2d %s" % (j, lcp[i], t[j:]))
- What is the longest repeated k-mer?
- How many distinct letters in alphabet?
\begin{tabular}{rl} 
SA, LCP, Suffix \\
\(20:\) & 0 a \\
\(9:\) & 1 acanalpanama \\
\(13:\) & 1 alpanama \\
\(18:\) & 1 ama \\
\(0:\) & 3 amanaplanacanalpanama \\
\(7:\) & 1 anacanalpanama \\
\(11:\) & 3 analpanama \\
\(16:\) & 3 anama \\
\(2:\) & 3 anaplanacanalpanama \\
\(4:\) & 1 aplanacanalpanama \\
\(10:\) & 0 canalpanama \\
\(6:\) & 0 lanacanalpanama \\
\(14:\) & 1 lpanama \\
\(19:\) & 0 ma \\
\(1:\) & 2 manaplanacanalpanama \\
\(8:\) & 0 nacanalpanama \\
\(12:\) & 2 nalpanama \\
\(17:\) & 2 nama \\
\(3:\) & 2 naplanacanalpanama \\
\(15:\) & 0 panama \\
\(5:\) & 1 planacanalpanama
\end{tabular}
SA, LCP,Suffix
0 a
13: 1 alpanama
18: 1 ama
    0: 3 amanaplanacanalpanama
    7: 1 anacanalpanama
11: 3 analpanama
16: 3 anama
2: 3 anaplanacanalpanama
4: 1 aplanacanalpanama
10: 0 canalpanama
6: 0 lanacanalpanama
14: 1 lpanama
19: 0 ma
    1: 2 manaplanacanalpanama
8: 0 nacanalpanama
12: 2 nalpanama
17: 2 nama
3: 2 naplanacanalpanama
15: 0 panama
    5:1 planacanalpanama
```


Summary of Pattern Searching to this Point

- Where:
- m is the length of the text to be searched
- n is the length of the pattern (maximum length if more than 1)
- $\quad p$ is the number of patterns

Method	Storage	Single Search	Multi Search
Brute Force	$O(m)$	$O(n m)$	$O(p n m)$
Keyword Tries	$O(p n)$	$O(n m)$	$O(p m)$
Suffix Trees	$O(m)^{*}$	$O(n)$	$O(p n)$
Suffix Arrays	$O(m)$	$O(n \log (m))$	$O(p n \log (m))$

* With large constants

A Rather Unknown Text Compression Approach

In 1994, two researchers from DEC research labs in Palo Alto, Michael Burrows and David Wheeler, devised a transformation for text that made it more compressible. Essentially, they devised a invertible permutation of any text that compresses well if the text exhibits redundancy.

Example:

$$
\begin{aligned}
\text { text } & =\text { "amanaplanacanalpanama\$" } \\
\text { BWT(text) } & =\text { "amnnn\$lcpmnapaaaaaala" }
\end{aligned}
$$

- Notice how the transformed text has long runs of repeated characters, $3 \mathrm{~ns}, 7$ as
- A simple form of compression, called run-length encoding, replaces repeated symbols by a (count, symbol) tuple
- If the count is 1 , then just the symbol appears

Thus, the BWT(text) can be represented as:

```
Compress(BWT(text)) = am3n$lcpmnap7ala (16 chars instead of 22)
```

- The savings are even more impressive for longer strings
- Notice, they introduced a special "end-of-text" symbol (\$ in our case), which is lexicographically before any other symbol

Key Idea behind the BWT

- \quad Sorting Cyclical Suffixes (say that 3-times fast)

- The BWT of "tarheels" is the last column of the sorted cyclical suffixes "ltherea\$"
- Notice that the sorted cyclical suffixes have a lot in common with a suffix array.
- The BWT is the "predecessors of all sorted cyclical suffixes", where the end-of-text symbol "\$" is considered the first lexicographically

In [7]: 1 \# making cyclical suffixes

```
2 t="carolina$"
3 print([t[i:]+t[:i] for i in range(len(t))])
```

\# making cyclical suffixes
['carolina\$', 'arolina\$c', 'rolina\$ca', 'olina\$car', 'lina\$caro', 'ina\$carol', 'na\$caroli', 'a\$carolin', '\$carolina']

BWT in Python

- Straightforward implementation based on the definition (there are faster construction methods)

In [28]: def BWT(t)

```
# create a sorted list of all cyclic suffixes of t
    rotation = sorted([t[i:]+t[:i] for i in range(len(t))])
    # concatenate the last symbols from each suffix
    return ''.join(r[-1] for r in rotation)
print(BWT("banana$"))
print(BWT("amanaplanacanalpanama$"))
print(BWT("abananaban$"))
```

annb\$aa
amnnn\$lcpmnapaaaaaaala nn\$bnbaaaaa

BWT from a Suffix Array

- It is even simpler to compute the BWT from a Suffix Array
- Key idea: The BWT is the "predecessor" symbol of each sorted suffix

> \$tarheel
> arheel\$t
> eel\$tarh
> el\$tarhe
> heel\$tar
> I\$tarhee
> rheel\$ta
> tarheel\$

In [9]:

```
def BWTfromSuffixArray(text, suffixarray):
    return ''.join(text[i-1] for i in suffixarray)
newt = 'carolina$'
sa = suffixArray(newt)
print(newt)
print(sa)
print(BWTfromSuffixArray(newt, sa))
```

carolina\$
$[8,7,1,0,5,4,6,3,2]$
anc\$loira

Inverting a BWT

- A property of a transform is that there is no information loss-- they are invertible.

Algorithm: inverseBWT(bwt):

1. Create a table of len(bwt) empty strings
2. repeat length(bwt) times:
3. prepend bwt as the first column of the table
4. sort rows of the table alphabetically
5. return (row of table with bwt's 'EOF' character)

$\underline{0}$	1	$\underline{2}$	3	4	5	6	7	8
1	1\$	1\$t	1\$ta	1\$tar	1\$tarh	1\$tarhe	1\$tarhee	\$tarheel
t	ta	tar	tarh	tarhe	tarhee	tarheel	tarheel\$	arheel\$t
h	he	hee	heel	heel\$	heel\$t	heel\$ta	heel\$tar	eel\$tarh
e	ee	eel	eel\$	eel\$t	eel\$ta	eel\$tar	eel\$tarh	el\$tarhe
r	rh	rhe	rhee	rheel	rheel\$	rheel\$t	rheel\$ta	heel\$tar
e	el	el\$	el\$t	el\$ta	el\$tar	el\$tarh	el\$tarhe	1\$tarhee
a	ar	arh	arhe	arhee	arheel	arheel\$	arheel\$t	rheel\$ta
\$	\$t	\$ta	\$tar	\$tarh	\$tarhe	\$tarhee	\$tarheel	tarheel\$

- Or you could always return the first row, with the '\$' first rather than last

Inverse BWT in Python

- Again, straightforward, but not the most efficient approach

In [33]: def inverseBWT(bwt):
\# initialize the table from t
table $=$ ['' for c in bwt]
for j in range(len(bwt)):
\#insert the BWT as the first column

\#return the row that ends with '\$'
return table[bwt.index('\$')]
print(inverseBWT("ltherea\$"))
print(inverseBWT("amnnn\$lcpmnapaaaaaaala"))
print (inverseBWT("annb\$aa"))
print(inverseBWT("nn\$bnbaaaaa"))
tarheel\$
amanaplanacanalpanama\$
banana\$
abananaban\$

BWT Compression

- Uncompressed the BWT(text) is same length as original text
- But, it has a tendency to form long runs of repeated symbols
- Why does it form runs?
- Because, repeated substrings sort together and share predecessors
- Somewhere further down the BWT there is a series of suffixes starting with u's that have o's as predecessors
- Redundancy leads to compression

Suffixes from some text	BWT
\vdots	\vdots
ld you eat them in a box? ...	u
ld you eat them with a fox? ...	u
ld you like them here or there? ...	u
ld you like them in a house? ...	u
ld you like them with a mouse? ...	u
\vdots	\vdots
ould you eat them in a box? ...	w
ould you eat them with a fox? ...	w
ould you like them here or there? ...	w
ould you like them in a house? ...	w
ould you like them with a mouse? ...	w
\vdots	\vdots

What do BWTs have to do with searching strings?

- There is close relationship between BWTs and Suffix Arrays
- We can construct a suffix array from a BWT as we saw with InverseBWT(bwt)
- Is there a way to access this "hidden" implicit suffix array for pattern searching?
- In 2005 two researchers, Ferragina \& Manzini, figured out how
- First, an important property they uncovered

Snapshots at jasonlove.com

"Sir, we're just not reaching them. Only a small percentage of people own vinyl records, and hardly anyone thinks to play them backwards."

Last-First (LF) mapping property of the BWT

- The BWT transforms "banana\$" to "annb\$aa"
- The predecessor symbols of a suffix array preserve the relative suffix order
- The jth occurrence of a symbol in the BWT corresponds to its jth occurrence in the suffix array

Sbanana	1 st ' a ' in BWT, 3rd ' a ' in banana, 1st ' a ' in suffix array
a\$banan	1 st ' n ' in BWT, 2nd ' n ' in banana, 1 st ' n ' in suffix array
na\$ban	2 nd ' n ' in BWT, 1st ' n ' in banana, 2nd ' n ' in suffix array
anana\$b	1 st 'b' in BWT, 1st 'b' in banana, 1st 'b' in suffix array
banana\$	1st '\$' in BWT, 1st '\$' in banana, 1st '\$' in suffix array
na\$bana	2nd 'a' in BWT, 2nd 'a' in banana, 2nd 'a' in suffix array
nana\$ba	3rd 'a' in BWT, 1st 'a' in banana, 3rd 'a' in suffix array

- This property allows one two traverse the suffix array indirectly
- ex: The 1st "a" of the bwt is also the first "a" of the suffix array, and its predecessor is the 1 st " n ", whose predecessor is the $2 n d$ "a", whose predecessor is the $2 n d$ " n ", and so on
- Meanwhile, the number of character occurrences in the BWT matches the suffix array (recall it is a permutation)

Revisiting the First-Last (FL) mapping property

i "hidden"suffix
0 \$annabananaban
1 aban\$annabanan
2 abananaban\$ann
3 an\$annabananab
4 anaban\$annaban
5 ananaban\$annab
6 annabananaban\$
7 ban\$annabanana
8 bananaban\$anna
9 n\$annabananaba
10 naban\$annabana
11 nabananaban\$an
12 nanaban\$annaba
13 nnabananaban\$a

The BWT for the string "annabananaban\$" is "nnnbnb\$aaaanaa". Last column on the left.

To extract the suffix with index 3.

The BWT tells us that the predecessor at 3 is "b".
FL tells us this is the 1 st " b " in the BWT and thus is the first letter of the suffix with index 7. ("b")
The BWT tells us that the predecessor at 7 is "a".
FL tells us this is the 1st "a" in the BWT and thus is the first letter of the suffix with index 1. ("ab")

Revisiting the First-Last (F-L) mapping property

i "hidden"suffix
0 \$annabananaban
1 aban\$annabanan
2 abananaban\$ann
3 an\$annabananab
4 anaban\$annaban
5 ananaban\$annab
6 annabananaban\$
7 ban\$annabanana
8 bananaban\$anna
9 n\$annabananaba
10 naban\$annabana
11 nabananaban\$an
12 nanaban\$annaba
13 nnabananaban\$a

The BWT tells us that the predecessor at 1 is " n ".
FL tells us this is the $2 n d$ " n " in the BWT and thus is the first letter of the suffix with index 10. ("nab")
The BWT tells us that the predecessor at 10 is "a".
FL tells us this is the 4th "a" in the BWT and thus is the first letter of the suffix with index 4. ("anab")
The BWT tells us that the predecessor at 4 is " n ".
FL tells us this is the 4th " n " in the BWT and thus is the first letter of the suffix with index 12. ("nanab")
The BWT tells us that the predecessor at 12 is "a".

Revisiting the First-Last (F-L) mapping property

i "hidden"suffix
0 \$annabananaban
1 aban\$annabanan
2 abananaban\$ann
3 an\$annabananab
4 anaban\$annaban
5 ananaban\$annab
6 annabananaban\$
7 ban\$annabanana
8 bananaban\$anna
9 n\$annabananaba
10 naban\$annabana
11 nabananaban\$an
12 nanaban\$annaba
13 nnabananaban\$a

The BWT tells us that the predecessor at 12 is "a".
FL tells us this is the 5th "a" in the BWT and thus is the first letter of the suffix with index 5. ("ananab")
The BWT tells us that the predecessor at 5 is "b".
FL tells us this is the 2nd "b" in the BWT and thus is the first letter of the suffix with index 8. ("bananab")
The BWT tells us that the predecessor at 8 is "a".
FL tells us this is the 2nd "a" in the BWT and thus is the first letter of the suffix with index 2. ("abananab")

The BWT tells us that the predecessor at 2 is " n ".

FM-index keeps track of the F-L details

i suffix bwt $\$$, a, b, n 0 \$annabananaban $\mathrm{n}: ~ 0,0,0,0$
1 aban\$annabanan n : $0,0,0,1$
2 abananaban\$ann n: 0, 0, 0, 2
3 an\$annabananab b: 0, 0, 0, 3
4 anaban\$annaban n : $0,0,1,3$
5 ananaban\$annab b: 0, 0, 1, 4
6 annabananaban\$ \$: 0, 0, 2, 4
7 ban\$annabanana a: 1, 0, 2, 4
8 bananaban\$anna a: 1, 1, 2, 4
9 n\$annabananaba a: 1, 2, 2, 4
10 naban\$annabana
11 nabananaban\$an n: 1, 4, 2, 4
12 nanaban\$annaba a: 1, 4, 2, 5
13 nnabananaban\$a a: 1, 5, 2, 5
$1,6,2,5$

The FM-index does the F-L mapping.
The final symbol counts provide the suffix offsets:
'\$': 0, 'a':0+1 = 1, 'b':1+6 =7, 'n':7+2=9
For example:
The BWT at 5 is "b".
The FM-index at 5 gives us a 1 for ' b ' which is added to the ' b ' suffix offset, 7 , to get the suffix 8.

Implementing " F-L tells us this is the 2nd " b " in the BWT and thus is the first letter of the suffix with index 8."

The FM-index

- The FM-index is another helper data structure like the LCP array mentioned previously
- It is a 2D array whose size is [|text $|+1,|\Sigma|]$, where $|\Sigma|$ is the alphabet size
- It keeps track of how many of each symbol have been seen in the BWT prior to its ith symbol
- The last m row is the totals for each symbol. By accumulating these totals you can determine the BWT index corresponding to the first of each symbol in the suffix array (Offset).
- Can be generated by a single scan through the BWT
- Memory overhead $O(m|\Sigma|)$

Index	Suffix Array	BWT	\$	a	b	n
0	\$banana	a	0	0	0	0
1	a\$banan	n	0	1	0	0
2	ana\$ban	n	0	1	0	1
3	anana\$b	b	0	1	0	2
4	banana\$	\$	0	1	1	2
5	na\$bana	a	1	1	1	2
6	nana\$ba	a	1	2	1	2
7	Counts		1	3	1	2
	Offset		0	1	4	5

Constructing the FM-index

```
In [38]: def FMIndex(bwt):
    fm = [{c: 0 for c in bwt}] # a list of dictionaries
    for c in bwt:
            row = {symbol: count + 1 if (symbol == c) else count for symbol, count in fm[-1].items()}
            fm.append(row)
    offset = {}
    N = 0
    for symbol in sorted(row.keys()):
            offset[symbol] = N
            N += row[symbol]
    return fm, offset
bwt = "annb$aa"
FM, Offset = FMIndex(bwt)
print("BWT %2s,%2s,%2s,%2s" % tuple([symbol for symbol in sorted(Offset.keys())]))
for i, row in enumerate(FM):
    data = [bwt[i]+':' if i < len(bwt) else '']+[row[symbol] for symbol in sorted(row.keys())]
    print("%3s %2d,%2d,%2d,%2d" % tuple(data))
print()
print([(sym, Offset[sym]) for sym in sorted(Offset.keys())])
BWT $, a, b, n
    a: 0, 0, 0, 0
    n: 0, 1, 0, 0
    n: 0, 1, 0, 1
    b: 0, 1, 0, 2
$: 0, 1, 1, 2
a: 1, 1, 1, 2
a: 1, 2, 1, 2
    1, 3, 1, 2
[('$', 0), ('a', 1), ('b', 4), ('n', 5)]
```


Find a Suffix's Predecessor

- Given an index i in the BWT, find the index in the BWT of the suffix preceding the suffix represented by i
- Suffix 5 is preceded by suffix 2
- Suffix 2 is preceded by suffix 6
- Suffix 6 is preceded by suffix 3
- The predecessor suffix of index i:

$$
\begin{aligned}
& c=B W T[i] \\
& \text { predec }=\text { Offset }[c]+\text { FMIndex[i][c] }
\end{aligned}
$$

- Predecessor of index 1

$$
\begin{array}{ll}
c=B W T[1] & \# ' n ' \\
\text { predec }=0[' n ']+\text { FMIndex[1]['n'] } & \# 5+0=5
\end{array}
$$

- Predecessor of index 5

$$
\begin{array}{ll}
c=\text { BWT [5] } & \# \text { 'a' } \\
\text { predec }=0\left[{ }^{\prime} a^{\prime}\right]+\text { FMindex[5]['a'] } & \# 1+1=2
\end{array}
$$

- Time to find predecessor: $\mathrm{O}(1)$

FM-index								
Index	Suffix Array	BWT	$\$$	a	b	n		
0	\$banana	a	0	0	0	0		
1	a\$banan	n	0	1	0	0		
2	ana\$ban	n	0	1	0	1		
3	anana\$b	b	0	1	0	2		
4	banana\$	\$	0	1	1	2		
5	na\$bana	a	1	1	1	2		
6	nana\$ba	a	1	2	1	2		
7	Counts		1	3	1	2		
	Offset		0	1	4	5		

Suffix Recovery

- What is the suffix array entry corresponding to BWT index i?
- Start at i and repeatedly find predecessors until i is reached again
- To find the original string, just start with $i=0$, the ' $\$$ ' index

In [39]: def recoverSuffix(i, BWT, FMIndex, Offset): suffix = c = BWT[i]
predec = Offset[c] + FMIndex[i][c]
suffix = c + suffix while (predec != i): $\mathrm{c}=\mathrm{BWT}[$ predec] predec = Offset[c] + FMIndex[predec][c] suffix = c + suffix
return suffix
\# recall that the FM-index that we built was "annb\$aa", the BWT of "banana\$"
for i in range(len(bwt)):
print(i, recoverSuffix(i, bwt, FM, Offset), bwt[i])
0 \$banana a
1 a\$banan n
2 ana\$ban n
3 anana\$b b
4 banana\$ \$
5 na\$bana a
6 nana\$ba a

Hum, maybe the FM-index gives us a
faster way to invert the BWT

1. Find the ' $\$$
2. Recover the suffix

| Index | Suffix Array | BWT | \$ | a | b | n |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | \$banana | a | 0 | 0 | 0 | 0 |
| 1 | a\$banan | n | 0 | 1 | 0 | 0 |
| 2 | ana\$ban | n | 0 | 1 | 0 | 1 |
| 3 | anana\$b | b | 0 | 1 | 0 | 2 |
| 4 | banana\$ | \$ | 0 | 1 | 1 | 2 |
| 5 | na\$bana | a | 1 | 1 | 1 | 2 |
| 6 | nana\$ba | a | 1 | 2 | 1 | 2 |
| 7 | Counts | | 1 | 3 | 1 | 2 |
| | Offset | | 0 | 1 | 4 | 5 |

Finding Patterns using a BWT

- Searches are performed in reverse order
- Searches return an interval of the suffix array that starts with the desired substring
- Finds all occurrences of pattern
- If there are no occurrences it finds an empty interval
- \quad Starts with full BWT range $(0, \mathrm{~N})$
- Narrows the range one symbol at a time
- To find substring "nana"

```
# Initialize to full range of suffix array
lo, hi = 0, len(BWT)
# Find occurrences of "a"
lo = Offset['a'] + FMIndex[lo]['a']
hi = Offset['a'] + FMIndex[hi]['a']
# Find occurrences of "na"
lo = Offset['n'] + FMIndex[lo]['n']
hi = Offset['n'] + FMIndex[hi]['n']
# Find occurrences of "ana"
lo = Offset['a'] + FMIndex[lo]['a']
hi = Offset['a'] + FMIndex[hi]['a']
# Find occurrences of "nana"
```



```
lo = Offset['n'] + FMIndex[lo]['n']
# lo = 5 + 1 = 6
hi = Offset['n'] + FMIndex[hi]['n']
# hi = 5 + 2 = 7
```


In Python

One of the simplest, fastest, methods we've seen for searching

```
In [40]: def findBWT(pattern, FMIndex, Offset):
    lo = 0
    hi = len(FMIndex) - 1
    for symbol in reversed(pattern):
        lo = Offset[symbol] + FMIndex[lo][symbol]
        hi = Offset[symbol] + FMIndex[hi][symbol]
    return lo, hi
print(findBWT("ana", FM, Offset))
print(findBWT("ban", FM, Offset))
print(findBWT("ann", FM, Offset))
```

$(2,4)$
$(4,5)$
$(4,4)$

0 \$banana
1 a\$banan
2 ana\$ban
3 anana\$b
4 banana\$
5 na\$bana
6 nana\$ba

BWT score card

Method	Storage	Single Search	Multi Search
Brute Force	$O(m)$	$O(n m)$	$O(p \mathrm{n} \mathrm{m})$
Keyword Tries	$O(p n)$	$O(n m)$	$O(p m)$
Suffix Trees	$O(m)^{\star}$	$O(n)$	$O(p n)$
Suffix Arrays	$O(m)$	$O(n \log (m))$	$O(p \mathrm{n} \mathrm{log}(\mathrm{m}))$
BWT	$O(m) \dagger$	$O(n)$	$O(p n)$

Where:

- m is the length of the text to be searched
- n is the length of the pattern (maximum length if more than 1)
- $\quad p$ is the number of patterns
* With large constants, however
\dagger Usually significantly smaller than m

BWT Gotchas

- While the BWT itself is small, its FM-index can be large
- A full FM-index requires $O(\mid \Sigma / \mathrm{m})$ space
- But it can be sampled with minimal performance impact
- rather than store the FM-index for all indices store only 1 in F
- when accessing find the closest smaller instantiated index and use the BWT to fill in the requested missing values
- Example with $\mathrm{F}=3$
- when FMIndex[5]['b'] is accessed
- retrieve FMIndex[3]['b'] = 0
- scan BWT from [3:5] counting 'b's (1) and adding them to the count at FMIndex[3]
- return the count $=1$
- In practice F values as large as 1000 have little performance impact

- Why? BWT is small and tends to stay in cache
- BWT is compressed so scanning through 1000 characters involves fewer reads
- To have all the capabilities of a Suffix Tree, a BWT needs an LCP array

Real-World uses of BWTs

BWTs are the dominant representation and method used for

Sequence Alignment

- Sequence-Alignment Problem: Given a collection of short nucleotide read (either DNA or RNA) find the best approximate alignment for each read in a reference genome
- Bowtie2 (2012) and BWA (2009) are the dominant aligners
- As a preprocess a BWT of the reference genome is built ($\approx 1-3 \mathrm{~GB}$)
- How alignment works:
- given a read from a sequenced fragment (72-150 base pairs typically)
- cut the read into smaller seeds (25-31 base pairs typically)
- Search for an exact match to each using the genome BWT
- Use local alignment (dynamic program) to match the remaining bases

Time for an Exercise

GO TO THE COURSE WEBSITE AND DO THE EXERCISE LINKED TO YOUR SETUP PAGE

"If you haven't exercised in a while, you may need to stretch and warm up before you stretch and warm up.'

Next Time

We go even deeper down the BWT rabbit hole

