Comp 555 - BioAlaorithms - Spring 2022

- Problem set \#Z 15 ONLINE AND DUE THURSDAY $2 / 7$ (NOT HARD. BUT TAKES TIME)

Realities of Genome Assembly

From Last Time

What we learned from a related "Minimal Superstring" problem

- Can be constructed by finding a Hamiltonian path of an k-dimensional De Bruijn graph over σ symbols
- Brute-force method is explores all V! paths through V vertices
- Branch-and-Bound method considers only paths composed of edges in the graph
- Finding a Hamiltonian path is an NP-complete problem
- There is no known method that can solve it efficiently as the number of vertices grows
- Can be solved by finding a Eulerian path of a (k-1)-dimensional De Bruijn graph where k-mers are edges.
- Euler's method finds a path using all edges in $\mathrm{O}(\mathrm{E}) \leq \mathrm{O}\left(\mathrm{V}^{2}\right)$ steps
- Graph must satisfy constraints to be sure that a solution exists
- All but two vertices must be balanced to have an Euler "tour/cycle"
- At most two can be semi-balanced, one with 1 more outgoing edge than incoming the other with one more incoming that outgoing to find a Euler "path"

Returning to the problem of Assembling Genomes

Many DNA molecules from an organism

- Extracted DNA is fractured/broken into random small fragments
- 100-200 bases are read from one or both ends of the fragment
- Typically, each base of the genome is covered by $10 x-30 x$ fragments

Genome Assembly vs Minimal Superstring

```
binary3 = {'000', '001', '010', '011', '100', '101', '110', '111'}
                    101 100
0 0 1 1 1 1
Solution #1: 0001011100
000 011
0 1 0 1 1 0
Solution #2: 0001110100
0 0 0 1 1 0
    0 1 1 0 1 0
```

- Minimal substring problem
- Every k-mer is present, (all σ^{k})
- Paths, and there may be multiple, all are solutions
- Read fragments
- No guarantee that we will ever see every k-mer
- Can't technically disambiguate repeats except by using heuristics

Recall our "Toy" 20-base genome example

GACGGCGGCGCACGGCGCAA	- Our toy 20 base sequence from 2 lectures ago
GACGG CGCAC	
ACGGC GCACG	
CGGCG CACGG	- The complete set of 16 (20-5+1) 5-mers
GGCGG ACGGC	
GCGGC CGGCG	
CGGCG GGCGC	
GGCGC GCGCA	
GGCGA CGCAA	

Issues:

- Having every k-mers is equivalent to $k \times$ coverage, ignoring boundaries
- Four repeated k-mers \{ACGGC, CGGCG, GCGCA, GGCGC\}

Some Code

First let's add a function to uniquely label repeated k-mers

In [7]: def kmersUnique(seq, k):
""" extracts all *k*-mers from *seq* string, while appending a
unique subscript to each repeated k-mer
kmers $=\operatorname{sorted}([\operatorname{seq}[i: i+k]$ for i in range(len(seq) $-k+1)]$) \#trick is to sort them first making repeats adjacent
for i in range(1,len(kmers)):
if (kmers[i] == kmers[i-1][0:k]): \# check adjacent k-mers t = kmers[i-1].find(' \quad ')

```
            if (t >=0): # more than 2 repeats
```

 \(\mathrm{n}=\) int(kmers[i-1][t+1:]) +1
 kmers[i] \(=\operatorname{kmers}[i]+{ }^{\prime}{ }^{\prime}\) " \(+\operatorname{str}(n)\)
 else: \# first repeat
 kmers \([i-1]=\operatorname{kmers}[i-1]+\) "_1"
 \(\operatorname{kmers}[i]=\operatorname{kmers}[i]+\) "_2"
 return kmers

```
kmers = kmersUnique("GACGGCGGCGCACGGCGCAA", 5)
print(kmers)
['ACGGC_1', 'ACGGC_2', 'CACGG', 'CGCAA', 'CGCAC', 'CGGCG_1', 'CGGCG_2', 'CGGCG_3', 'GACGG', 'GCACG', 'GCGCA_1', 'GCGCA_2', 'GCG
GC', 'GGCGC_1', 'GGCGC_2', 'GGCGG']
```


Our Graph class (renamed) from last lecture

import itertools
class Graph
def __init_(self, vlist= Initialize a Graph self.index $=\{v: i$ for self.vertex $=\{1: v$ for self.edge self.edgelabel $=$
def addVertex(self, label) index = len(self self. index[label] = i self.index[label] $=$ in def addEdge(self, vsrc, vd """ Add a directed edg Repeated edges are dis
e = (self.index[vsrc],
if (repeats) or (e no self.edge.append(e
self.edgelabel.app def hamiltonianPath(self) """ A Brute-force meth Basically, all possibl or edges. Since edges for path in itertools. for i in xrange(l) if ((path[i], p break
else: return []
def SearchTree(self, path, """ A recursive Branch Paths are extended on edges from the graph. self.PathV2result return True return True
v in vertice
for v in verticesLeft: if self.Search return Tru
return False
def hamiltonianPathV2(s A wrapper funct Hamiltonian Path se, self. PathV2result = self.SearchTree([], return self.PathV2r,
def degrees(self):
""" Returns two dic of each node from t inDegree $=\{ \}$
outDegree $=\{$
for src, dst in sel outDegree[src] : inDegree[dst] = return inDegree, ou
def verifyAndGetStart(st inDegree, outDegree start $=0$
end $=0$
end $=0$
for vert in self.ve ins = inDegree.: outs = outDegre
if (ins == outs continue elif (ins - out end = vert elif (outs - in start $=$ ver . else:
start, end break
if (start >= 0) and return star els return -1
def eulerEdges(self, pa: edgeId $=\{ \}$
for i in xrange(len edgeId[self.edg. edgeList = []
for i in xrange(len edgeList.append return edgeList
def eulerianPath(self):
graph $=[(s r c, d s t)$ for src, dst in currentVertex = self.verifyAndGet path $=$ [currentVertex]
"next" is where vertices get in \# it starts at the end (i.e. it i \# but later "side-trips" will ins next $=1$
while len(graph) >0
for edge in graph:
if (edge[$\theta]==$ currentVer currentVertex = edge[graph.remove(edge) path.insert(next, cur next +=
break

1se:

edge in graph try: next $=$ path.index curren
except ValueError continue
else: print "There is no pa return False

eturn path

def render(self, highlightPath=[]) "" " Outputs a version of the grap edgeId = \{\}
for i in xrange(len(self. edge))
edgeId[self.edge[i]] = edgeId
edgeSet $=\operatorname{set}()$ for i in xrange(len(highlightPat dst $=$ self.index[highlightPat dgeSet.add(edgeId[src,dst].F
result =
esult += 'digraph \{
result $+=$ 'graph [nodesep=2, s
for index, label in self.vertex.i
result += N\% [shape="bc
for i, e in enumerate(self.edge):
sre, dst $=\mathrm{e}$
result += N\%d \rightarrow N\%d' \% (src, dst
label = self.edgelabel[i]
if $($ len $($ label $)>0):$
result += ' [label="\%s", penwidth=3.0]' \% (label)
else:
result += ' [label="\%s"]' \% (label)
elif (i in edgeSet):
result $+=\quad$ [penwidth=3.0] result $+=$ '; ${ }^{n}$ '

```
result += ' overlap=false;\n'
```

result $+=$ ' $\} \backslash$
return result

Finding Paths in our K-mer De Bruijn Graphs

In [8]: $\quad \mathrm{k}=5$
target $=$ "GACGGCGGCGCACGGCGCAA"
kmers $=$ kmersUnique(target, k)
G1 $=$ Graph(kmers)
for vsrc in kmers:
for vdst in kmers:
if $(\operatorname{vsrc}[1: k]==\operatorname{vdst}[0: k-1])$: G1.addEdge(vsrc,vdst)
path $=$ G1.hamiltonianPathV2()
print (path)
seq $=$ path[0][0:k]
for kmer in path[1:]:
seq $+=$ kmer[k-1]
print(seq)
print(seq == target)
['GACGG', 'ACGGC_1', 'CGGCG_1', 'GGCGC_1', 'GCGCA_1', 'CGCAC', 'GCACG', 'CACGG', 'ACGGC_2', 'CGGCG_2', 'GGCGG', 'GCGGC', 'CG GCG_3', 'GGCGC_2', 'GCGCA_2', 'CGCAA'] GACGGCGCACGGCGGCGCAA
False
Not the sequence we expected

Let's look at the resulting graphs

The one we hoped for. Visits CGGCG $_{3}$ before CGGCG $_{2}$

The one we found visits CGGCG $_{2}$ before CGGCG $_{3}$

What's the Problem?

- There are many possible Hamiltonian Paths
- How do they differ?
- There were two possible paths leaving any [CGGCG] node
- $3 \times[$ CGGCG $] \rightarrow[$ GGCGC] $\times 2$
- $3 \times$ [CGGCG] \rightarrow [GGCGG]
- A valid solution can be found down either path
- There might be even more solutions
- Genome assembly appears ambiguous like the Minimal Substring problem, but is it?

How about an Euler Path?

In [20]:

```
M k = 5
    target = "GACGGCGGCGCACGGCGCAA"
    kmers = kmersUnique(target, k)
    print(kmers)
    nodes = sorted(set([code[:k-1] for code in kmers] + [code[1:k] for code in kmers]))
    print(nodes)
    G2 = Graph(nodes)
    for code in kmers:
        G2.addEdge(code[:k-1], code[1:k],code)
    path = G2.eulerianPath()
    print(path)
    path = G2.eulerEdges(path)
    print(path)
    seq = path[0][0:k]
    for kmer in path[1:]:
        seq += kmer[k-1]
    print(seq)
    print(seq == target)
```

 ['ACGGC_1', 'ACGGC_2', 'CACGG', 'CGCAA', 'CGCAC', 'CGGCG_1', 'CGGCG_2', 'CGGCG_3', 'GACGG', 'GCACG', 'GCGCA_1', 'GCGCA_2',
 'GCGGC', 'GGCGC_1', 'GGCGC_2', 'GGCGG']
 ['ACGG', 'CACG', 'CGCA', 'CGGC', 'GACG', 'GCAA', 'GCAC', 'GCGC', 'GCGG', 'GGCG']
 [4, 0, 3, 9, 8, 3, 9, 7, 2, 6, 1, 0, 3, 9, 7, 2, 5]
 ['GACGG', 'ACGGC_2', 'CGGCG_3', 'GGCGG', 'GCGGC', 'CGGCG_2', 'GGCGC_2', 'GCGCA_2', 'CGCAC', 'GCACG', 'CACGG', 'ACGGC_1', 'CG
 GCG 1', 'GGCGC 1', 'GCGCA 1', 'CGCAA']
 GACGGCGGCGCACGGCGCAA
 True

The k-1 De Bruijn Graph with k-mer edges

- We got the right answer, but we were lucky.
- There is a path in this graph that matches the Hamiltonian path that we found before

Only when leaving the
island "GGCG" do you
have a real choice of
next islands to visit.

Target:
Result
GACGGCG ${ }_{\text {CACGGCGGCGCAA }}$

What are the Differences?

Choose a bigger k-mer

In [22]: $\quad \mathrm{M}=8$

```
target = "GACGGCGGCGCACGGCGCAA"
kmers = kmersUnique(target, k)
print(kmers)
nodes = sorted(set([code[:k-1] for code in kmers] + [code[1:k] for code in kmers]))
print(nodes)
G3 = Graph(nodes)
for code in kmers
    G3. addEdge(code[:k-1], code[1:k], code)
path = G3.eulerianPath()
print(path)
path = G3.eulerEdges(path)
print(path)
seq = path[0][0:k]
for kmer in path[1:]:
    seq += kmer[k-1]
print(seq)
print(seq == target)
['ACGGCGCA', 'ACGGCGGC', 'CACGGCGC', 'CGCACGGC', 'CGGCGCAA', 'CGGCGCAC', 'CGGCGGCG', 'GACGGCGG', 'GCACGGCG', 'GCGCACGG', 'GC
GGCGCA', 'GGCGCACG', 'GGCGGCGC']
['ACGGCGC', 'ACGGCGG', 'CACGGCG', 'CGCACGG', 'CGGCGCA', 'CGGCGGC', 'GACGGCG', 'GCACGGC', 'GCGCACG', 'GCGGCGC', 'GGCGCAA', 'G
GCGCAC', 'GGCGGCG']
[6, 1, 5, 12, 9, 4, 11, 8, 3, 7, 2, 0, 4, 10]
['GACGGCGG', 'ACGGCGGC', 'CGGCGGCG', 'GGCGGCGC', 'GCGGCGCA', 'CGGCGCAC', 'GGCGCACG', 'GCGCACGG', 'CGCACGGC', 'GCACGGCG', 'CA
CGGCGC', 'ACGGCGCA', 'CGGCGCAA']
GACGGCGGCGCACGGCGCAA
True
```


Advantage of larger k-mers

- Making k larger (8) eliminates the second choice of loops
- There are edges to choose from, but they all lead to the same path of vertices

Applied to the Hamiltonian Solution

In [23]: $\quad \mathrm{M}=8$

```
target = "GACGGCGGCGCACGGCGCAA"
kmers = kmersUnique(target, k)
G4 = Graph(kmers)
for vsrc in kmers:
    for vdst in kmers:
        if (vsrc[1:k] == vdst[0:k-1]):
            G4.addEdge(vsrc,vdst)
path = G4.hamiltonianPathV2()
print(path)
seq = path[0][0:k]
for kmer in path[1:]:
    seq += kmer[k-1]
print(seq)
print(seq == target)
['GACGGCGG', 'ACGGCGGC', 'CGGCGGCG', 'GGCGGCGC', 'GCGGCGCA', 'CGGCGCAC', 'GGCGCACG', 'GCGCACGG', 'CGCACGGC', 'GCACGGCG', 'CA
CGGCGC', 'ACGGCGCA', 'CGGCGCAA']
GACGGCGGCGCACGGCGCAA
True
```


Graph with 8-mers as vertices

- There is only one Hamiltonian path
- There are no repeated k-mers

Assembly in Reality

- Problems with repeated k-mers
- We can't distinguish between repeated k-mers
- Recall we knew from our example that were \{2:ACGGC, 3:CGGCG, 2:GCGCA, 2:GGCGC\}
- Assembling path without repeats:

```
In [26]: M k = 5
```

```
target = "GACGGCGGCGCACGGCGCAA"
```

target = "GACGGCGGCGCACGGCGCAA"
kmers = set([target[i:i+k] for i in range(len(target) -k+1)])
kmers = set([target[i:i+k] for i in range(len(target) -k+1)])
nodes = sorted(set([code[:k-1] for code in kmers] + [code[1:k] for code in kmers]))
nodes = sorted(set([code[:k-1] for code in kmers] + [code[1:k] for code in kmers]))
G5 = Graph(nodes)
G5 = Graph(nodes)
for code in kmers:
for code in kmers:
G5.addEdge(code[:k-1], code[1:k], code)
G5.addEdge(code[:k-1], code[1:k], code)
print(sorted(G5.vertex.items()))
print(sorted(G5.vertex.items()))
print(G5.edge)
print(G5.edge)
[(0, 'ACGG'), (1, 'CACG'), (2, 'CGCA'), (3, 'CGGC'), (4, 'GACG'), (5, 'GCAA'), (6, 'GCAC'), (7, 'GCGC'), (8, 'GCGG'), (9, 'G
[(0, 'ACGG'), (1, 'CACG'), (2, 'CGCA'), (3, 'CGGC'), (4, 'GACG'), (5, 'GCAA'), (6, 'GCAC'), (7, 'GCGC'), (8, 'GCGG'), (9, 'G
GCG')]
GCG')]
[(9, 8), (3, 9), (1, 0), (4, 0), (6, 1), (8, 3), (0, 3), (2, 5), (7, 2), (2, 6), (9, 7)]

```
[(9, 8), (3, 9), (1, 0), (4, 0), (6, 1), (8, 3), (0, 3), (2, 5), (7, 2), (2, 6), (9, 7)]
```


Resulting Graph with "unique" 5-mers as edges

- There is no single Euler Path
- But there are is a set of paths that covers all edges ['GACGGCG', 'GGCGGC', 'GGCGCA', 'CGCAA', 'CGCACGG']
- Extend a sequence from a node until you reach a node with an out-degree > in-degree
- Save these partially assembled subsequences, call them contigs
- Start new contigs following each out-going edge at these branching nodes

Next assemble contigs

- Use a modified read-overlap graph to assemble these contigs
- Add edge-weights that indicate the amount of overlap

- Usually much smaller than the graph made from k-mers
- Sometimes you can add extra edges to the de Bruijn graph based on coverage

A Heavy Path

Find the heaviest path touching all vertices in this smaller graph

GACGGCGGCGCACGGCGCAA
 GACGGCG
 GGCGGC
 4
 GGCGCA
 3
 CGCACGG 4
 GGCGCA 2
 CGCAA 4
 17

Discussion

- No simple single algorithm for assembling a real genome sequences
- Generally, an iterative task
- Choose a k-mer size, ideally such that no or few k-mers are repeated
- Assemble long paths (contigs) in the resulting graph
- Use these contigs, if they overlap sufficiently, to assemble longer sequences
- Truly repetitive subsequences are a challenge
- Leads to repeated k-mers and loops in graphs in the problem areas
- Often we assemble the "shortest" version of a genome consistent with our k-mer set
- Things we've ignored
- Our k-mers are extracted from short read sequences that may contain errors
- Our short read set could be missing entire segments from the actual genome
- Our data actually supports 2 paths, one through the primary sequence, and a second through it again in reverse complement order.

