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Realities of Genome Assembly



From Last Time KN

What we learned from a related "Minimal Superstring" problem

e Can be constructed by finding a Hamiltonian path of an k-dimensional De Bruijn
graph over 6 symbols
o Brute-force method is explores all V! paths through V vertices
o Branch-and-Bound method considers only paths composed of edges in the graph
o Finding a Hamiltonian path is an NP-complete problem
o There is no known method that can solve it efficiently as the number of vertices
grows
e Can be solved by finding a Eulerian path of a (k-1)-dimensional De Bruijn
graph where k-mers are edges.
o Euler's method finds a path using all edges in O(E) < O(V?) steps
o Graph must satisfy constraints to be sure that a solution exists
e All but two vertices must be balanced to have an Euler "tour/cycle’
e At most two can be semi-balanced, one with 1 more outgoing edge than incoming the
other with one more incoming that outgoing to find a Euler "path’
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Returning to the problem of Assembling Genomes ¥,

Many DNA molecules from an organism
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e  Extracted DNA is fractured/broken into random small fragments
o 100-200 bases are read from one or both ends of the fragment
e  Typically, each base of the genome is covered by 10x - 30x fragments

Consensus Genome
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Genome Assembly vs Minimal Superstring e

binary3 = {'000', '001', '010", '011', '100', '101', '110', '111%}

101 100 111 100
001 111 001 101

Solution #1: 0001011100 Solution #2: 0001110100
000 011 000 110

010 110 011 010

e Minimal substring problem
o Every k-mer is present, (all o)
o Paths, and there may be multiple, all are solutions
e Read fragments
o No guarantee that we will ever see every k-mer
o Can't technically disambiguate repeats except by using heuristics
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Recall our “Toy” 20-base genome example .

GACGGCGGCGCACGGCGCAA - Our toy 20 base sequence from 2 lectures ago
GACGG CGCAC
ACGGC  GCACG
CGGCG  CACGG - The complete set of 16 (20-5+1) 5-mers
GGCGG  ACGGC
GCGGC CGGCG
CGGCG  GGCGC
GGCGC  GCGCA
GGCGA  CGCAA

Issues:

e Having every k-mers is equivalent to kx coverage, ignoring boundaries
e Four repeated k-mers {ACGGC, CGGCG, GCGCA, GGCGC}

Comp 555 - Spring 2022



:}éf?

Some Code

First let's add a function to uniquely label repeated k-mers

In [7]: def kmersUnique(seq, k):
""" extracts all *k*-mers from *seq* string, while appending a
unique subscript to each repeated k-mer """
kmers = sorted([seq[i:i+k] for i in range(len(seq)-k+1)]) # trick is to sort them first making repeats adjacent
for i in range(1,len(kmers)):

if (kmers[i] == kmers[i-1][@:k]): # check adjacent k-mers
t = kmers[i-1].find("'_")
if (t9=:0): # more than 2 repeats
n = int(kmers[i-1][t+1:]) + 1
kmers[i] = kmers[i] + "_" + str(n)
else: # first repeat
kmers[i-1] + "_1"

kmers[i-1]
kmers[i] =
return kmers

kmers[i] + "_2"

kmers = kmersUnique("GACGGCGGCGCACGGCGCAA", 5)
print(kmers)

['ACGGC_1', 'ACGGC_2', 'CACGG', 'CGCAA', 'CGCAC', 'CGGCG_1', 'CGGCG_2', 'CGGCG_3', 'GACGG', 'GCACG', 'GCGCA_1', 'GCGCA_2', 'GCG
GC', 'GGCGC_1', 'GGCGC_2', 'GGCGG']
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Our Graph class (renamed) from last lecture

def hamiltonianPathv2(s:

In [25]:  import itertools g f def eulerianPath(self): g A : te(self.edge)
L b graoh = (s azt) for src dat in i)
class Graph: ] = i 2 B
B self.pathv2result = CUFFEHEERIES = Sl e result += ' N%d -> N%d' % (src, dst)

def __init_ (self, vlist=[

de

-

Initialize a Graph
self.index = {v:i for
self.vertex = {i:v for
self.edge = []
self.edgelabel = []
addVertex(self, label)
""" Add a labeled vert
index = len(self.index
self.index[label] = in

de

-h

self.SearchTree([],
return self.Pathv2r

degrees(self):

""" Returns two dic
of each node from t
inDegree = {}
outDegree = {}

for src, dst in sel

path = [currentVertex]
# "next" is where vertices get 1in
# it starts at the end (i.e. it 1
# but Llater "side-trips"” will 1ins
next =1
while len(graph) > 0:
for edge in graph:
if (edge[©@] == currentVer
currentVertex = edge[
graph.remove(edge)

label = self.edgelabel[i]
if (len(label) > @):
if (i in edgeSet):

result += ' [label="%s", penwidth=3.0]"' % (label)

else:

result += ' [label="%s"]"' % (label)

elif (i in edgeSet):

result += '

[penwidth=3.0]"

result += ';\n’

; - outDegree[src] : : result += overlap=false;\n"'
def ZZ§25222§Z§L1”3::3 _vi inDegree[dst] = PR, @ result += '}\n' ’
Wi pdd a di;ected’edg return inDegree, ou EEth+= 2 return result
rea

Repeated edges are dis

i def verifyAndGetStart(s else:
e = (self.index[vsrc Y. ) .
if (iepeats) or[(e ni; inDegree, outDegree for :dge in graph:
= ry:
self.edge.append(e start = @ i '
self.edgelaEZI.aép end = @ next = path.index
def hamiltonianPath(self): for vert in self.vel currentVertex = e
""" A Brute-force meth ins = inDegree.; break
Basically, all possibl outs = outDegre: except V?luEError:
for edges. Since edges if (ins == outs continue
continue else:

de

el

made for *which* versi
for path in itertools.
for i in xrange(le

if ((path[il,p

elif (ins - out
end = vert

elif (outs - in
start = ver

print “There is no pa
return False
return path

cileos break else: def render(self, highlightPath=[]):
return [self.v start, end : """ Outputs a version of the grap
return [] ’ break using graphviz tools (http://www.

SearchTree(self, path,
""" A recursive Branch
Paths are extended one
edges from the graph.
if (len(verticesLeft)
self.Pathv2result
return True
for v in verticeslLeft:
if (len(path) == o
if self.Search
return Tru
return False
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if (start >= @) and
return start
else:
return -1

eulerEdges(self, pa

edgeld = {}

for i in xrange(len
edgeId[self.edg

edgelist = []

for i in xrange(len
edgelist.append

return edgelist

edgeld = {}

for i in xrange(len(self.edge)):
edgeId[self.edge[i]] = edgeld

edgeSet = set()

for i in xrange(len(highlightPath
src = self.index[highlightPat
dst = self.index[highlightPat
edgeSet.add(edgeId[src,dst].p

result = "'

result += 'digraph {\n'

result += ' graph [nodesep=2, s

for index, label in self.vertex.i
result += ' N%d [shape="bc
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Finding Paths in our K-mer De Bruijn Graphs

In [8]: M|k =5
target = "GACGGCGGCGCACGGCGCAA"
kmers = kmersUnique(target, k)
G1 = Graph(kmers)
for vsrc in kmers:

i e e Target:  GACGGCGGCGCACGGCGCAA
61..addEdge(vsrc, vdst) Result:  GACGGCGCACGGCGGCGCAA

path = Gl.hamiltonianPathVv2()

print(path)

seq = path[@][@:k]

for kmer in path[1:]:
seq += kmer[k-1]

print(seq)

print(seq == target)

['GACGG', 'ACGGC_1', 'CGGCG 1', 'GGCGC_1', 'GCGCA 1', "CGCAC', 'GCACG', 'CACGG', 'ACGGC_2', 'CGGCG 2', 'GGCGG', 'GCGGC', 'CG
GCG_3', 'GGCGC_2', 'GCGCA 2', "CGCAA']

GACGGCGCACGGCGGCGCAA

False

Not the sequence we expected ...
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Let’s look at the resulting graphs

The one we hoped for. Visits CGGCG, before CGGCG, The one we found visits CGGCG,, before CGGCG,
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What's the Problem? i,

e There are many possible Hamiltonian Paths

e How do they differ?
o There were two possible paths leaving any
[CGGCG] node
(/( m 3 x[CGGCG]— [GGCGC] x 2
m 3 x[CGGCG] — [GGCGG]
o Avalid solution can be found down either
path
e There might be even more solutions

e (Genome assembly appears ambiguous
; ( / like the Minimal Substring problem, but is it?
> /
~ “ﬂ
o

| caGea_2

RPN criy
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How about an Euler Path? i

In [20]: M | k =5
target = "GACGGCGGCGCACGGCGCAA"
kmers = kmersUnique(target, k)
print(kmers)

nodes = sorted(set([code[:k-1] for code in kmers] + [code[1:k] for code in kmers]))
print(nodes)
G2 = Graph(nodes)
for code in kmers:
G2.addEdge(code[:k-1],code[1:k],code)
path = G2.eulerianPath()
print(path)
path = G2.eulerEdges(path)
print(path)

seq = path[@][8:k]

for kmer in path[1:]:
seq += kmer[k-1]

print(seq)

print(seq == target)

['ACGGC_1', 'ACGGC_2', 'CACGG', 'CGCAA', 'CGCAC', 'CGGCG_1', 'CGGCG_2', 'CGGCG_3', 'GACGG', 'GCACG', 'GCGCA_1', 'GCGCA_2°',
'GCGGC', 'GGCGC_1', "GGCGC_2', 'GGCGG']

["ACGG"', "CACG', 'CGCA', 'CGGC', 'GACG', 'GCAA', 'GCAC', 'GCGC', 'GCGG', 'GGCG']

[25:9;.3; 9, 8; 3y 95 7;:2::65:1,.9, 3; 95 75 2;-5]

['GACGG', "ACGGC_2', 'CGGCG_3', 'GGCGG', 'GCGGC', 'CGGCG_2', 'GGCGC_2', 'GCGCA_2', "CGCAC', 'GCACG', 'CACGG', '"ACGGC_1', 'CG
GCG_1', 'GGCGC_1', 'GCGCA_1', 'CGCAA']

GACGGCGGCGCACGGCGCAA

True
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The k-1 De Bruijn Graph with k-mer edges e

GACG

& GACGG

GCGC GCGG

l‘G(‘(}(‘.»N‘:(‘A:
CGCA
f;fGCAA 9.CGCAC

GCAA GCAC

N:(‘:\C G

CACG
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e We got the right answer, but we
were lucky.

e Thereis a path in this graph that
matches the Hamiltonian path that
we found before

Only when Ieavinﬂ the
? islond 'aaCa" do you
" have a real choice of
next islands to visit.

11.CACGG

Target: GCGCACGGCGCAA
Result: GACGGCGCACGGCGGCGCAA
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What are the Differences? i

GACG

" How might we favor one |
solution over the other?

ACGG ACGG

2 ACGGC ;%5 cin V\ 12.ACGGC_1 3 ACGGC_2
CGGC CGGC
GCGC

GACG

10.CGGCG_2 13.CGGCG_3

GGCG

&J(i(i(‘(i(‘:

5.GCGGC

GCGC K CACGG 11 CACGG
s uc(acr\w:c.\ > is (;c(;v,N:(:»\ 2
CGCA CGCA
Qo,cch:‘cAc {occmN‘f\c
GCAA GCAC GCAA GCAC
\Xﬁ:.\m \:mco

CACG

CACG
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Choose a bigger k-mer e

In [22]: M k=28
target = "GACGGCGGCGCACGGCGCAA"
kmers = kmersUnique(target, k)
print(kmers)
nodes = sorted(set([code[:k-1] for code in kmers] + [code[1:k] for code in kmers]))
print(nodes)
G3 = Graph(nodes)
for code in kmers:
G3.addEdge(code[ :k-1],code[1:k],code)
path = G3.eulerianPath()
print(path)
path = G3.eulerEdges(path)
print(path)

seq = path[@][e:k]

for kmer in path[1:]:
seq += kmer[k-1]

print(seq)

print(seq == target)

[ "ACGGCGCA', "ACGGCGGC', 'CACGGCGC', 'CGCACGGC', 'CGGCGCAA', 'CGGCGCAC', 'CGGCGGCG', 'GACGGCGG', 'GCACGGCG', "GCGCACGG', 'GC
GGCGCA', 'GGCGCACG', 'GGCGGCGC']

["ACGGCGC', 'ACGGCGG', 'CACGGCG', 'CGCACGG', 'CGGCGCA', 'CGGCGGC', 'GACGGCG', 'GCACGGC', "GCGCACG', 'GCGGCGC', 'GGCGCAA', 'G
GCGCAC', 'GGCGGCG']

16,:3,.55,.:124.295 4, 11, 8, 3,92, 0% 7%;.30]

[ 'GACGGCGG", "ACGGCGGC', 'CGGCGGCG', 'GGCGGCGC', 'GCGGCGCA', 'CGGCGCAC', 'GGCGCACG', 'GCGCACGG', 'CGCACGGC', "GCACGGCG', 'CA
CGGCGC', 'ACGGCGCA', 'CGGCGCAA']

GACGGCGGCGCACGGCGCAA

True

Comp 555 - Spring 2022 14



Advantage of larger k-mers

GACGGCG

e Making k larger (8) eliminates the second o
choice of loops

e There are edges to choose from, but they all %
lead to the same path of vertices

k.CGGCGGCG

GGCGGCG

£.GGCGGCGC
ACGGCGC GCGGCGC
/ wc A ﬁcaoccm
CGGCGCA
6.CGGCGCAC N“GGCGCAA—\
GGCGCAC GGCGCAA
t.GGCGCACG
11.CACGGCGC GCGCACG
ZX,GCGCACGG
CGCACGG
}l LCGCACGGC
GCACGGC
‘/GC—\CGG(‘G

CACGGCG
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Applied to the Hamiltonian Solution

In [23]: M k=28
target = "GACGGCGGCGCACGGCGCAA"
kmers = kmersUnique(target, k)
G4 = Graph(kmers)
for vsrc in kmers:
for vdst in kmers:

if (vsrc[1:k] == vdst[@:k-1]):

G4.addEdge(vsrc,vdst)
path = G4.hamiltonianPathv2()

print(path)

seq = path[@][6:k]

for kmer in path[1:]:
seq += kmer[k-1]

print(seq)

print(seq == target)

[ 'GACGGCGG', 'ACGGCGGC', 'CGGCGGCG',

CGGCGC', 'ACGGCGCA', 'CGGCGCAA']
GACGGCGGCGCACGGCGCAA
True
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'GGCGGCGC ',

'GCGGCGCA'

k)

'CGGCGCAC',

"GGCGCACG ',

'GCGCACGG',

"CGCACGGC',

'GCACGGCG',

'CA
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Graph with 8-mers as vertices

e There is only one Hamiltonian path

e There are no repeated k-mers
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GACGGCGG

l

ACGGCGGC

! CGGCGCAA
CGGCGGCG T

|

GGCGGCGC

A}

GCGGCGCA

/ |

CGGCGCAC «+— ACGGCGCA

GGCGCACG \

/ CACGGCGC

GCGCACGG

" CGCACGGC - GCACGGCG
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Assembly in Reality

e Problems with repeated k-mers

e We can't distinguish between repeated k-mers

e Recall we knew from our example that were
{2:ACGGC, 3:CGGCG, 2:GCGCA, 2:GGCGC}

e Assembling path without repeats:

In [26]: M|k =5
target = "GACGGCGGCGCACGGCGCAA"
kmers = set([target[i:i+k] for i in range(len(target)-k+1)])
nodes = sorted(set([code[:k-1] for code in kmers] + [code[1:k] for code in kmers]))
G5 = Graph(nodes)
for code in kmers:
G5.addEdge(code[ :k-1],code[1:k],code)

print(sorted(G5.vertex.items()))
print(G5.edge)

[(8, 'ACGG'), (1, 'CACG'), (2, 'CGCA'), (3, 'CGGC'), (4, 'GACG'), (5, "GCAA'), (6, 'GCAC'), (7, "GCGC'), (8, "GCGG'), (9, 'G
GCG')]
[(958);5 (35 9)s (25:0), (4,:0)5::(6, 1), (85 3); (95:3)5.(255); (73 2)5 (250),;:49;7)]
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Resulting Graph with "unique” 5-mers as edges

e There is no single Euler Path
e But there are is a set of paths that covers all edges
[ ' GACGGCG', 'GGCGGC', 'GGCGCA',
, ' CGCACGG']
o Extend a sequence from a node until you reach
a node with an out-degree > in-degree
o Save these partially assembled subsequences,
call them contigs
o Start new contigs following each out-going
edge at these branching nodes
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Next assemble contigs i,

e Use a modified read-overlap graph to assemble these contigs
e Add edge-weights that indicate the amount of overlap

GACGGCG

| \Q\\\\~:.'
CGCAA CGCACGG

e Usually much smaller than the graph made from k-mers
e Sometimes you can add extra edges to the de Bruijn graph based on coverage
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A Heavy Path e,

Find the heaviest path touching all vertices in this smaller graph

GACGGCGGCGCACGGCGCAA GACGGCG
GACGGCG

GGCGGC 4
GGCGCA 3
CGCACGG 4
GGCGCA 2
CGCAA 4
7
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Discussion i,

No simple single algorithm for assembling a real genome sequences
Generally, an iterative task
o Choose a k-mer size, ideally such that no or few k-mers are repeated
o Assemble long paths (contigs) in the resulting graph
o Use these contigs, if they overlap sufficiently, to assemble longer sequences
Truly repetitive subsequences are a challenge
o Leads to repeated k-mers and loops in graphs in the problem areas
o Often we assemble the "shortest" version of a genome consistent with our k-mer set
Things we've ignored
o Our k-mers are extracted from short read sequences that may contain errors
o  Our short read set could be missing entire segments from the actual genome
o  Our data actually supports 2 paths, one through the primary sequence, and a second through it
again in reverse complement order.
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