Comp 555 - BioAlgorithms - Spring 2022

55

Finding Paths in Graphs

GRAPH
REPRESENTATIONS
HAMILTONIAN PATHS
DE BRUITN SEAQVENCES
EVLERIAN TOVRS

PS#) IS DUE TONIGHT
BEFORE MIDNIGHT
EXTRA OFFICE HoVR
3:30-+:30 10DAY
PS#H2 WILL BE POSTED
Tobay

Assembling sequences is a graph problem

Two graphs representing 5-mers from the sequence "GACGGCGGCGCACGGCGCAA"

Eulerian Tour:

GACG

Hamiltonian Path:

Each k-mer is a vertex. Find a path that passes Each k-mer is an edge. Find a path that passes
through every vertex of this graph exactly once. through every edge of this graph exactly once.

Comp 555 - Spring 2022

De Bruijn's Minimal Superstring Problem e,

Or, equivalently, a Eulerian cycle of in a
(k-1)-dimensional De Bruijn graph. Here
edges represent the k-length substrings.

Minimal Superstrings can be constructed by
finding a Hamiltonian path of an
k-dimensional De Bruijn graph. Defined as a
graph with |2|¥ knodes and edges from nodes
whose k-1 suffix matches a node's k-1 prefix

0001 000

)00

7

100

Comp 555 - Spring 2022

Solving Graph Problems on a Computer s

An Adjacency Matrix: Adjacency Lists:

Graph Representations
NodeName = [A, 'B','C', 'D', 'E]]

A|B|C|D|E
An example graph: Tolilolol: Edge =[(0,1), (0,4),
(1,2), (1,3),
B |0[0[1[1]0 (2,0)
c|1/0|0|0|O (3 0)
G/ o |1jojojo]o (41), (42), (43)]
' ° E|0[1(1(1]0

An n x N matrix where A. An array or list of vertex pairs
’ (i,j) indicating an edge from

° is 1 if there is an edge

vertex to the j" vertex
and 0 otherwise.

Comp 555 - Spring 2022

An adjacency list graph object

In [1]: M class BasicGraph:
def __init_ (self, vlist=[]):
""" Tnitialize a Graph with an optional vertex list """
self.index = {v:i for i,v in enumerate(vlist)} # looks up index given name
self.vertex = {i:v for i,v in enumerate(vlist)} # looks up name given index
self.edge = []
self.edgelabel = []

(>

This 3r‘aPh class imp|emer\+9 an
acljacency list. Each vertex has a

def addvertex(self, label): ‘Nome' and an 'index" that is used
nnnoaAdd a labeled vertex to the graph nawn _‘ / in+er‘nal|y. Notice the trick here
index = len(self.index) of how each node’s index is
self.index[label] = index created This wouldn't be ideal
self.vertex[index] = label Lor graphs that need to remove
vertices.

def addeEdge(self, vsrc, vdst, label='', repeats=True):
""" Add a directed edge to the graph, with an optional label.
Repeated edges are distinct, unless repeats is set to False. """ - //
e = (self.index[vsrc], self.index[vdst])
if (repeats) or (e not in self.edge):
self.edge.append(e)
self.edgelabel.append(label)

Comp 555 - Spring 2022

Edﬁes connect
vertices Iay ‘name’,
but can have their
owh ‘label'

Usage example

Let's generate the vertices needed to find De Bruijn's superstring of 4-bit binary strings...
and create a graph object using them.

In [17]: 1 import itertools

' '

build a list of binary number "strings'
binary = [''.join(t) for t in itertools.product('01', repeat=4)]

print(binary)

#

build a graph with edges connecting binary strings where
the k-1 suffix of the source vertex matches the k-1 prefix

1€ of the destination vertex
15 61 = BaSiCGraph(binary) ['ece0', 'OGOO1', 'GO10', 'GO11', 'G100', '6161', 'G110', '6111', '1000', '1601', '1010', '1011', '1100', '1101', '1110°,
'1111']

S

for vsrc in binary:
G1 addEdge(vsrc VSF‘C[l']""O') Vertex indices = {'0000': 0, 'e001': 1, '0010': 2, '0011': 3, '0100': 4, '0G101': 5, '0110': 6, '0111': 7, '1000': 8, '100
: ; :

S 1': 9, '1e10': 10, '1011': 11, '11e0': 12, '1101': 13, '1110': 14, '1111': 15}
14 G1.addEdge(vsrc, vsrc[1:]+'1")
Index to Vertex = {0: 'eee0', 1: 'eeei', 2: 'eei10', 3: 'eeil', 4: 'eie0', 5: 'e1ei', 6: 'e110', 7: 'e111', 8: '1000', 9:

- '1001', 10: '1010', 11: '1011', 12: '1100', 13: '1101', 14: '1110', 15: '1111'}

f; pr}nt(z e 2 : Edges = [(0, 0), (0, 1), (1, 2), (1, 3), (2, 4), (2, 5), (3, 6), (3, 7), (4, 8), (4, 9), (5 10), (5 11), (6, 12), (6, 1
print("Vertex indices = ", G1.index) 3), (7, 14), (7, 15), (8, ©), (8, 1), (9, 2), (9, 3), (10, 4), (10, 5), (i1, 6), (11, 7), (12, 8), (12, 9), (13, 10), (13,
rint() 11), (14, 12), (14, 18), (15, 14), (15, 15)]
2 P 0: 0000 --> 0000 1: 00O --> 0001 2: 0001 --> 0010 3: 0001 --> 0011
19 print("Index to Vertex = ", Gl.vertex) 4: 0010 --> 0100 5: 0010 --> 0101 6: 0011 --> 0110 7: 0011 --> 0111
& . 8: 0100 --> 1000 9: 0100 --> 1001 10: 0101 --> 1010 11: 0101 --> 1011
<l prlnt() 12: 0110 --> 1100 13: 0110 --> 1101 14: 0111 --> 1110 15: 0111 --> 1111
)1 3 " =" 16: 1000 --> 0000 17: 1000 --> 0001 18: 1001 --> 0010 19: 1001 --> 0011
21 print("Edges » G1.edge) 20: 1010 --> 0100 21: 1010 --> 0101 22: 1011 --> 0110 23: 1011 --> 0111
24: 1100 --> 1000 25: 1100 --> 1001 26: 1101 --> 1010 27: 1101 --> 1011
for i, (src, dst) in enumerate(G1.edge): 28: 1110 --> 1100 29: 1110 --> 1161 30: 1111 --> 1110 31: 1111 --> 1111
23 v ¥ . :
24 print("%2d: %s --> %s" % (i, Gl.vertex[src], Gil.vertex[dst]), end =" ")
25 if (i % 4 == 3):
2¢ print()

Comp 555 - Spring 2022

The resulting graph

Comp 555 - Spring 2022

‘ 1010
‘ 1001

\

V4
1

[

1000

1/
A

0001

0011

VAN

(7 #{\‘(\

2

How would we write an
algorithm to find the
minimal superstring
using this graph?

By this construction, the
minimal superstring is a
path through every
vertex, a "Hamiltonian

et

~ ‘

How do we find one?

0100

€
\‘g‘!

o

The Hamiltonian Path Problem

Next, we need an algorithm to find a path in a graph that visits every node exactly once,
if such a path exists.

How?

Approach:

® Enumerate every possible path (all permutations of N vertices).
Python's itertools.permutations() does this.

® Verify that there is an edge connecting all N-1 pairs of adjacent vertices

Comp 555 - Spring 2022

7754ﬁ§\
|

2

All vertex permutations = every possible path

A simple graph with 4 vertices

In [5]: M dimport itertools
Permutations is another iterator in our ?rienemy,

start = 1 Y itertools package. it generates all NI permutations of a
for path in itertools.permutations([1,2,3,4]): given list or set.
if (path[@] != start):
print()
start = path[0]
print(path, end=', ')
(1, 2, 3, 4), (1, 2, 4, 3), (1, 3, 2, 4), (1, 3, 4, 2), (1, 4, 2, 3), (1, 4, 3, 2),
(2, qy 3, @)y (2, 2, 4, 3)y: (2, 3 Ly 4) (24 3By 4, X))y (2, 4, D) 3)e (2, 4, 3; 1),
(37 1y 25 4)z (3% i 4 2)5 (37 2i Iz 4)s (37 2+ 47) (37 4y s 2)s (35 4 2; 1);
(4, Ty 2; 3); (4; 2y 35 2), (8 24 2y 3); (4y 25 3, 3), (4, 3;'1; 2); (4; 3, 2, 1)

Comp 555 - Spring 2022

A Hamiltonian Path Algorithm

e Test each vertex permutation to see if it is a valid path
e Let's extend our BasicGraph into an EnhancedGraph class
e Create the superstring graph and find a Hamiltonian Path

In [10]: M import itertools

class EnhancedGraph(BasicGraph):
def hamiltonianPath(self):
"t A Brute-force method for finding a Hamiltonian Path.

Basically, all possible N! paths are enumerated and checked
for edges. Since edges can be reused there are no distictions

made for *which* version of a repeated edge.

for path in itertools.permutations(sorted(self.index.values()))

for i in range(len(path)-1):
if ((path[i],path[i+1]) not in self.edge):
break

else: _.. /

return [self.vertex[i] for i in path]
return []

G1 = EnhancedGraph(binary)

for vsrc in binary:
G1l.addEdge(vsrc,vsrc[1:]+'0")
Gl.addEdge(vsrc,vsrc[1:]+'1")

WARNING: takes about 20 mins
%time path = Gl.hamiltonianPath()
print(path)

Note that this code exits once it
Finds *any* Homiltonion path. it
makes no attempt to Find every
one possible.

superstring = path[0] + ''.join([path[i][3] for i in range(1,len(path))])

print(superstring)

CPU times: user 18min 11s, sys: 52 ms, total: 18min 11s

wall time: 18min 11s

['e000', '00O1', '6010', 'e160', '1601', 'eei11', 'ei11e', 'i11e1',
110', '1100', '1000']

0000100110101111000

Comp 555 - Spring 2022

'1010', 'e1e01', 'ie11', 'e111', '1111',

"1

10

Visualizing the result

Comp 555 - Spring 2022

11

|s this solution unique? i,

How about the path ="0000111101001011000"

e Our Hamiltonian path finder produces a single path, if one exists.
e How would you modify it to produce every valid Hamiltonian path?
e How long would that take?

One of De Bruijn's contributions is that there are:

(G!)Gk—l

ok

paths leading to superstrings where o=|%|. C \ /

In our case 0=2 and k = 4, so there should be 28 / 2% = 16 paths.
(ignoring those that are just different starting points on the same cycle)

((((((

Comp 555 - Spring 2022 12

Brute Force is slow! KN

e There are N! possible paths for N vertices.
e Our 16 vertices give 20,922,789,888,000
possible paths
e There is a fairly simple Branch-and-Bound
evaluation strategy
o Extend paths using only valid edges
o Use recursion to extend paths along
graph edges
o Trick is to maintain two lists:
m The path so far, where each adjacent pair
of vertices is connected by an edge
m Unused vertices. When the unused list
becomes empty we've found a path

Comp 555 - Spring 2022 13

A Branch-and-Bound Hamiltonian Path Finder

In [9]:

Comp 555 - Spring 2022

M import itertools
class ImprovedGraph(BasicGraph):

def SearchTree(self, path, verticesLeft):
""" A recursive Branch-and-Bound Hamiltonian Path search.
Paths are extended one node at a time using only available
edges from the graph. """
if (len(verticesLeft) == 0):
self.Pathv2result = [self.vertex[i] for 1 in path]
return True
for v in verticesLeft:
if (len(path) == 0) or ((path[-1],v) in self.edge):

if self.SearchTree(path+[v], [r for r in verticesLeft if r != v]):

return True
return False

def hamiltonianPath(self):
"nmo A wrapper function for invoking the Branch-and-Bound
Hamiltonian Path search. """
self.Pathv2result = []
self.SearchTree([],sorted(self.index.values()))
return self.Pathv2result

Gl = ImprovedGraph(binary)
for vsrc in binary:
G1l.addEdge(vsrc,vsrc[1:]+'0")
G1l.addEdge(vsrc,vsrc[1:]+'1")
%timeit path = Gl.hamiltonianPath()
path = Gl.hamiltonianPath()
print(path)
superstring = path[0] + ''.join([path[i][3] for i in range(1,len(path))])
print(superstring)

81 ps + 684 ns per loop (mean = std. dev. of 7 runs, 10000 loops each)

['eeE0', '6001', '0010', '6100', '1061', 'e611', 'e116', '11e1', '1010', 'e161',
110', '11e0', '1000']

0000100110101111000

11011",

0111,

5 4 s L0

b

A

.

V\Ihy ish'+
+his aood
enough?

/ P

2

14

s there a better Hamiltonian Path Algorithm? o,

e Better in what sense?
e Better = number of steps to find a solution that is polynomial in either the number of edges or vertices
o Polynomial: variable®nstant
o Exponential: constant'@@'e or worse, variable'ariable NP Problems
o For example our Brute-Force algorithm was O(k") < O(V!) < O(VY)
where V is the number of vertices in our graph, a problem variable
e We can only practically solve only small problems if the algorithm NP Complete
for solving them takes a number of steps that grows exponentially o
with a problem variable (i.e. the number of vertices), or else be
satisfied with heuristic or approximate solutions ‘ |
e Can we prove there is no algorithm to find a Hamiltonian Path NP-Hard | NP-Hard
in a time that is polynomial in the number of vertices or edges in the graph? “
No one has, and here is a million-dollar reward if you can!
If instead of a brute who just enumerates all possible answers we
knew an oracle could just tell us the right answer (i.e. Nondeterministically)
o It's easy to verify that an answer is correct in Polynomial time.
o Alot of known problems will suddenly become solvable using your algorithm

NP-Complete

P=NP=
NP-Complete

NP

P = NP

Comp 555 - Spring 2022

15

Recall De Bruijn's Problem

Find the shortest string that includes all possible k-mers, from a given alphabet, 3.

Or, equivalently, a Eulerian (Edge) cycle of in a
(k-1)-dimensional De Bruijn graph. Here edges
represent the k-length substrings.

Such “Minimal Superstrings” can be constructed
by finding a Hamiltonian path of an k-dimensional
De Bruijn graph. Defined as a graph with || nodes
with edges between nodes whose k-1 suffix
match another node's k-1 prefix

0001 000

)00

7

100

Comp 555 - Spring 2022

16

De Bruijn's Insight s,

De Bruijn knew that Euler had an ingenious way to solve this problem.

Recall Euler's desire to construct a tour where each bridge was crossed \; 2
only once. ? @

e Start at any vertex v, and follow edges until you return to v
e Aslong as there exists any vertex u that belongs to the current
tour, but has adjacent edges that are not part of the tour
o Start a new path fromu
o Following unused edges until you return to u
o Join the new trail to the original tour

He didn't solve the general Hamiltonian Path problem, but he was able to
remap Minimal Superstring problem to a simpler problem. Note every
Minimal Superstring Problem can be formulated as a Hamiltonian Path in
a graph, but the converse is not true. Instead, he found a clever mapping
of every Minimal Superstring Problem to a Eulerian Path problem.

Let's demonstrate using the islands and bridges shown. _ o
A more complicated Konigsberg

Comp 555 - Spring 2022

17

An algorithm for finding an Eulerian cycle

Our first path:

A.1>2-2>9

Comp 555 - Spring 2022

18

Take a side-trip S,

and merge it into our previous path:

B.2>7->3->2

122>9->1

r

2272322

1222723222921

Comp 555 - Spring 2022 19

Continue making side trips KN

merging in a second side-trip:

1

1222>27>32>22>9->1
1222>272>2326>2524>32>22>9->1

Comp 555 - Spring 2022 20

Continue making side trips o

merging in a third side-trip:

D.72122>11 >8> 7

1222>272>2326>2524>322->9->1
12227212211 >8>72>326>252>24>32>22>9->1

Comp 555 - Spring 2022 21

Repeat until there are no more side trips to take %,
merging in a final side-trip:

D.9211->10->9

This algorithm requires a number of steps that is linear in the number of graph edges, O(E).

The number of edges in a general graph is E=O(V ?) (the adjacency matrix tells us this).

1222721222112 8>72>23262>2524>32>22->9->1
122272122211 2>28>7>326>52>24>3->2->
9211->10->9->1

Comp 555 - Spring 2022 22

Converting to code

def eulerianPath(self):
graph = [(src,dst) for src,dst in self.edge]
currentVertex = self.verifyAndGetStart()
path = [currentVertex]
"next" is the 1list index where vertices get inserted into our tour
it starts at the end (i.e. same as appending), but later "side-trips" will insert in the middle
next = 1
while (len(graph) > 0): # when all edges are used, len(graph) == 0
follows a path until it ends
for edge in graph:
if (edge[0] == currentVertex):
currentVertex = edge[1]
graph.remove(edge)
path.insert(next, currentVertex) # inserts vertex in path
next += 1
break
else:
Look for side-trips along the current path
for edge in graph:
try:
1insert our side-trip after the "u" vertex that 1is starts from
next = path.index(edge[0]) + 1
currentVertex = edge[0]
break
except ValueError:
continue
else:
print("There is no path!")
return False
return path

Comp 555 - Spring 2022

23

Some issues with our code

e Where do we start our tour?

(The mysterious VerifyandGetStart()
method)

e Where will it end?

e How do we know that each side-trip
will rejoin the graph at the same point
where it began?

e Will this approach always work?

If no, when will it fail?
What conditions are necessary for it to succeed?

Comp 555 - Spring 2022

24

Is there always a solution?

In our bridge tour example, we
mentioned parking our bike,
taking a walking tour, (blowing up
bridges as we cross them), and
then getting back on our bike
once the tour is over.

|s there any way to visit all
bridges in this example, and still
get back to our bike?

Comp 555 - Spring 2022

25

Euler's Theorems i,

A graph is balanced if, for every vertex, the number of incoming edges equals to the number of outgoing
edges:

in(v)=out(v)
Theorem 1: A connected graph has a Eulerian Cycle if and only if all of its vertices are balanced.

e Sketch of Proof:
In mid-tour of a valid Euler cycle, there must be a path onto an island and another path off

[J
e This is true until no paths exist
e Thus every vertex must be balanced

Theorem 2: A connected graph has an Eulerian Path if and only if it contains at exactly two semi-balanced

vertices and all others are balanced.
e Exceptions are allowed for the start and end of the tour
e Asingle start vertex can have one more outgoing path than incoming paths
e Asingle end vertex can have one more incoming path than outgoing paths

Semi-balanced vertex: |in(v)-out(v)|=1

One of the semi-balanced vertices, with out(v) = in(v)+1 is the start of the tour.
The other semi-balanced vertex, with in(v) = out(v)+1 is the end of the tour

Comp 555 - Spring 2022

VerifyAndGetStart Code

def degrees(self):

""" Returns two dictionaries with the inDegree and outDegree

nun

of each node from the graph.

inDegree = {}

outDegree = {}

for src, dst in self.edge:
outDegree[src] = outDegree.get(src, 0) + 1
inDegree[dst] = inDegree.get(dst, 9) + 1

return inDegree, outDegree

def verifyAndGetStart(self):
inDegree, outDegree = self.degrees()
start, end = 9, ©

The "degree" of a vertex is a
measure of how mony edgee it
has. For a directed graph it
makes sense to consider how
many eclg)ec; enter the hode (its
in—deﬂr'ee aond how many leave the
hode (its out-degree).

node © will be the starting node is a Euler cycle 1is found

for vert in self.vertex:
ins = inDegree.get(vert,9)
outs = outDegree.get(vert,0)
if (ins == outs):
continue
elif (ins - outs == 1) and (end == 9):
end = vert
elif (outs - ins == 1) and (start == 0):
start = vert
else:
start, end = -1, -1
break
if (start >= ©) and (end >= 9):
return start
else:
return -1

Comp 555 - Spring 2022

A

There's some+h'|nﬁ subtle
oinﬂ on here that might
make a aood problem set

or exam guestion

27

A New Graph Class

In [13]:) class AwesomeGraph(ImprovedGraph):

def eulerianPath(self):
graph = [(src,dst) for src,dst in self.edge]
currentVertex = self.verifyAndGetStart()
path = [currentVertex]
"next" is the 1list index where vertices get inserted into our tour
it starts at the end (i.e. same as appending), but later "side-trips" will insert in the middle
next = 1
while (len(graph) > 0): # when all edges are used, len(graph) == 0
follows a path until it ends
for edge in graph:
if (edge[0] == currentVertex):
currentVertex = edge[1]
graph.remove(edge)
path.insert(next, currentVertex) # inserts vertex in path
next += 1
break
else:
Look for side-trips along the current path
for edge in graph:
try:
insert our side-trip after the
next = path.index(edge[0]) + 1
currentVertex = edge[0]
break
except ValueError:
continue

u" vertex that is starts from

else:
print("There is no path!")
return False
return path

def eulerEdges(self, path):
edgeId = {}
for i in range(len(self.edge)):
edgeId[self.edge[i]] = edgeld.get(self.edge[i], []) + [i]
edgeList = []
for i in range(len(path)-1):
edgelList.append(self.edgelabel[edgeId[path[i],path[i+1]].pop()])
return edgeList

Comp 555 - Spring 2022

(7 -#'1‘('\
|

Note: | also added an eulerEdges()
method to the class. The Eulerian
Path algorithm returns a list of
vertices along the path, which is
consistent with the Hamiltonian
Path algorithm. However, in our
case, we are less interested in the
series of vertices visited than we
are the series of edges. Thus,
eulerEdges(), returns the edge
labels along a path.

2

28

A visualization method for the graph

def render(self, highlightPath=[]):
""" Qutputs a version of the graph that can be rendered
using graphviz tools (http://www.graphviz.org/)."""
edgeld = {}
for i in range(len(self.edge)):
edgeId[self.edge[i]] = edgeld.get(self.edge[i], []) + [i]
edgeSet = set()
for i in range(len(highlightPath)-1):
src = self.index[highlightPath[i]]
dst = self.index[highlightPath[i+1]]
edgeSet.add(edgeId[src,dst].pop())

result = '’
result += 'digraph {\n'
result += ' graph [nodesep=2, size="10,10"];\n’

for index, label ﬁn self.vertex.items():

for i, e in enumerate(self.edge):
src, dst = e
result += ' N%d -> N%d' % (src, dst)
label = self.edgelabel[i]
if (len(label) > 0):
if (i in edgeSet):
result += ' [label="%s", penwidth=3.0]' % (label)
else:
result += ' [label="%s"]"' % (label)
elif (i in edgeSet):
result += ' [penwidth=3.0]"’
result += ';\n’
result += ' overlap=false;\n’
result += '}\n’'
return result

result += ' N%d [shape="box", style="rounded", label="%s"];\n' % (index, label)

Comp 555 - Spring 2022

Creates a graph description
That can be rendered using
A package called "graphvis”
Available at:

https:/www.graphviz.org

29

Finding Minimal Superstrings with an Euler Path

In: [15]:

(7 if\
|

M binary = [''.join(t) for t in itertools.product('0l', repeat=4)]

nodes = sorted(set([code[:-1] for code in binary] + [code[1:] for code in binary]))
G2 = AwesomeGraph(nodes)
for code in binary:

Here I give each edge a label

G2.addEdge(code[:-1],code[1:],code)

%timeit G2.eulerianPath()

path = G2.eulerianPath()

print(nodes)

print(path)

edges = G2.eulerEdges(path)

print(edges)

print(edges[©@] + ''.join([edges[i][-1] for i in range(1,len(edges))]))

21.1 Pgs £ 601 ns per loop (mean = std. dev. of 7 runs, 10000 loops each)

[1000); *001): %©10'; “011'; '1200" 101'; “'110% T111"]

(e, o, 1, 3, 7, 7, 6, 5, 3, 6, 4, 1, 2, 5, 2, 4, 0]

[70000", ‘eeer'., ‘6011’ . <‘eixi . daais. <Aa1ev., Jatelr, ‘deil.,. <eaie’,. Sa1ee’. 41001, eele’. ‘o101’ I
010', '0100', '1000']

pel
6609111161100161660 _‘ ~—_ Recdll this took. over 18 mins using the Hamiltonion Pa+h

approach, and 8l us with branch-and-bound

Comp 555 - Spring 2022 30

Our graph and its Euler path o,

e In this case our the graph was fully balanced. So the Euler Path is a cycle.
e Our tour starts arbitrarily with the first vertex, '000'

0001

000

)00
100

000 — 000 — 001 - 011 » 111 - 111 - 110 - 101 - 011 - 110 — 100 — 001 —- 010 — 101 — 010 — 100 — 000
superstring = "0000111101100101000"

Comp 555 - Spring 2022 31

Next Time N

Back to genome assembly

wwl.o.com ‘

T\\j{\

e,

o=
W
&

|

“We encourage our employees to take a bath here.”

Comp 555 - Spring 2022 32

