
Comp 555 - BioAlgorithms - Spring 2022

Finding Paths in Graphs

● Graph

representations

● Hamiltonian Paths

● De Bruijn Sequences

● Eulerian Tours

● PS#1 is due Tonight

before midnight

● Extra Office Hour

3:30-4:30 today

● PS#2 will be posted

Today

Comp 555 - Spring 2022

Assembling sequences is a graph problem
Two graphs representing 5-mers from the sequence "GACGGCGGCGCACGGCGCAA"

2

Hamiltonian Path:

Each k-mer is a vertex. Find a path that passes
through every vertex of this graph exactly once.

Eulerian Tour:

Each k-mer is an edge. Find a path that passes
through every edge of this graph exactly once.

Comp 555 - Spring 2022

De Bruijn's Minimal Superstring Problem

3

Minimal Superstrings can be constructed by
finding a Hamiltonian path of an
k-dimensional De Bruijn graph. Defined as a
graph with |Σ|k knodes and edges from nodes
whose k−1 suffix matches a node's k−1 prefix

Or, equivalently, a Eulerian cycle of in a
(k−1)-dimensional De Bruijn graph. Here
edges represent the k-length substrings.

Comp 555 - Spring 2022

Solving Graph Problems on a Computer

4

 Graph Representations
 An example graph:

An Adjacency Matrix:

An n × n matrix where Aij
is 1 if there is an edge
connecting the ith
vertex to the jth vertex
and 0 otherwise.

Adjacency Lists:

Edge = [(0,1), (0,4),
 (1,2), (1,3),
 (2,0),
 (3,0),
 (4,1), (4,2), (4,3)]

An array or list of vertex pairs
(i,j) indicating an edge from
the ith vertex to the jth vertex.

NodeName = ['A', 'B', 'C', 'D', 'E']

Comp 555 - Spring 2022

An adjacency list graph object

5

This graph class implements an
adjacency list. Each vertex has a
"Name" and an "index" that is used
internally. Notice the trick here
of how each node's index is
created. This wouldn't be ideal
for graphs that need to remove
vertices.

Edges connect
vertices by "name",
but can have their
own "label"

Comp 555 - Spring 2022

Usage example
Let's generate the vertices needed to find De Bruijn's superstring of 4-bit binary strings...
and create a graph object using them.

6

Comp 555 - Spring 2022

The resulting graph

7

How would we write an
algorithm to find the
minimal superstring
using this graph?

By this construction, the
minimal superstring is a
path through every
vertex, a "Hamiltonian
Path"

How do we find one?

Comp 555 - Spring 2022

The Hamiltonian Path Problem
Next, we need an algorithm to find a path in a graph that visits every node exactly once,
if such a path exists.
How?

Approach:

● Enumerate every possible path (all permutations of N vertices).
Python's itertools.permutations() does this.

● Verify that there is an edge connecting all N-1 pairs of adjacent vertices

8

Comp 555 - Spring 2022

All vertex permutations = every possible path
A simple graph with 4 vertices

9

Permutations is another iterator in our frienemy,
itertools package. It generates all N! permutations of a
given list or set.

Comp 555 - Spring 2022

A Hamiltonian Path Algorithm
● Test each vertex permutation to see if it is a valid path
● Let's extend our BasicGraph into an EnhancedGraph class
● Create the superstring graph and find a Hamiltonian Path

10

Note that this code exits once it
finds *any* Hamiltonian path.. It
makes no attempt to find every
one possible.

Comp 555 - Spring 2022

Visualizing the result

11

Comp 555 - Spring 2022

Is this solution unique?
How about the path = "0000111101001011000"

● Our Hamiltonian path finder produces a single path, if one exists.
● How would you modify it to produce every valid Hamiltonian path?
● How long would that take?

One of De Bruijn's contributions is that there are:

paths leading to superstrings where σ=|Σ|.

In our case σ=2 and k = 4, so there should be 28 / 24 = 16 paths.
(ignoring those that are just different starting points on the same cycle)

12

Comp 555 - Spring 2022

● There are N! possible paths for N vertices.
● Our 16 vertices give 20,922,789,888,000

possible paths
● There is a fairly simple Branch-and-Bound

evaluation strategy
○ Extend paths using only valid edges
○ Use recursion to extend paths along

graph edges
○ Trick is to maintain two lists:

■ The path so far, where each adjacent pair
of vertices is connected by an edge

■ Unused vertices. When the unused list
becomes empty we've found a path

Brute Force is slow!

13

Comp 555 - Spring 2022

A Branch-and-Bound Hamiltonian Path Finder

14

Why isn’t
this good
enough?

Comp 555 - Spring 2022

Is there a better Hamiltonian Path Algorithm?
● Better in what sense?
● Better = number of steps to find a solution that is polynomial in either the number of edges or vertices

○ Polynomial: variableconstant

○ Exponential: constantvariable or worse, variablevariable

○ For example our Brute-Force algorithm was O(kV) < O(V!) < O(VV)
where V is the number of vertices in our graph, a problem variable

● We can only practically solve only small problems if the algorithm
for solving them takes a number of steps that grows exponentially
with a problem variable (i.e. the number of vertices), or else be
satisfied with heuristic or approximate solutions

● Can we prove there is no algorithm to find a Hamiltonian Path
in a time that is polynomial in the number of vertices or edges in the graph?

○ No one has, and here is a million-dollar reward if you can!
○ If instead of a brute who just enumerates all possible answers we

knew an oracle could just tell us the right answer (i.e. Nondeterministically)
○ It's easy to verify that an answer is correct in Polynomial time.
○ A lot of known problems will suddenly become solvable using your algorithm

15

Comp 555 - Spring 2022

Recall De Bruijn’s Problem
Find the shortest string that includes all possible k-mers, from a given alphabet, ∑.

16

Such “Minimal Superstrings” can be constructed
by finding a Hamiltonian path of an k-dimensional
De Bruijn graph. Defined as a graph with |Σ|k nodes
with edges between nodes whose k−1 suffix
match another node's k−1 prefix

Or, equivalently, a Eulerian (Edge) cycle of in a
(k−1)-dimensional De Bruijn graph. Here edges
represent the k-length substrings.

Comp 555 - Spring 2022

De Bruijn's Insight
De Bruijn knew that Euler had an ingenious way to solve this problem.

Recall Euler's desire to construct a tour where each bridge was crossed
only once.

● Start at any vertex v, and follow edges until you return to v
● As long as there exists any vertex u that belongs to the current

tour, but has adjacent edges that are not part of the tour
○ Start a new path from u
○ Following unused edges until you return to u
○ Join the new trail to the original tour

He didn't solve the general Hamiltonian Path problem, but he was able to
remap Minimal Superstring problem to a simpler problem. Note every
Minimal Superstring Problem can be formulated as a Hamiltonian Path in
a graph, but the converse is not true. Instead, he found a clever mapping
of every Minimal Superstring Problem to a Eulerian Path problem.

Let’s demonstrate using the islands and bridges shown.

17

Comp 555 - Spring 2022

An algorithm for finding an Eulerian cycle
Our first path:

18

Comp 555 - Spring 2022

Take a side-trip
and merge it into our previous path:

19

Comp 555 - Spring 2022

Continue making side trips
merging in a second side-trip:

20

Comp 555 - Spring 2022

Continue making side trips
merging in a third side-trip:

21

Comp 555 - Spring 2022

Repeat until there are no more side trips to take
merging in a final side-trip:

22

This algorithm requires a number of steps that is linear in the number of graph edges, O(E).
The number of edges in a general graph is E=O(V 2) (the adjacency matrix tells us this).

Comp 555 - Spring 2022

Converting to code

23

Comp 555 - Spring 2022

Some issues with our code
● Where do we start our tour?

(The mysterious VerifyandGetStart()
method)

● Where will it end?
● How do we know that each side-trip

will rejoin the graph at the same point
where it began?

● Will this approach always work?
If no, when will it fail?
What conditions are necessary for it to succeed?

24

Comp 555 - Spring 2022

Is there always a solution?
In our bridge tour example, we
mentioned parking our bike,
taking a walking tour, (blowing up
bridges as we cross them), and
then getting back on our bike
once the tour is over.

Is there any way to visit all
bridges in this example, and still
get back to our bike?

25

Comp 555 - Spring 2022

Euler's Theorems
A graph is balanced if, for every vertex, the number of incoming edges equals to the number of outgoing
edges:

in(v)=out(v)

Theorem 1: A connected graph has a Eulerian Cycle if and only if all of its vertices are balanced.
● Sketch of Proof:
● In mid-tour of a valid Euler cycle, there must be a path onto an island and another path off
● This is true until no paths exist
● Thus every vertex must be balanced

Theorem 2: A connected graph has an Eulerian Path if and only if it contains at exactly two semi-balanced
vertices and all others are balanced.

● Exceptions are allowed for the start and end of the tour
● A single start vertex can have one more outgoing path than incoming paths
● A single end vertex can have one more incoming path than outgoing paths

 Semi-balanced vertex: |in(v)−out(v)|=1

One of the semi-balanced vertices, with out(v) = in(v)+1 is the start of the tour.
The other semi-balanced vertex, with in(v) = out(v)+1 is the end of the tour

26

Comp 555 - Spring 2022

VerifyAndGetStart Code

27

The "degree" of a vertex is a
measure of how many edges it
has. For a directed graph it
makes sense to consider how
many edges enter the node (its
in-degree) and how many leave the
node (its out-degree).

There's something subtle
going on here that might
make a good problem set
or exam question

Comp 555 - Spring 2022

A New Graph Class

28

Note: I also added an eulerEdges()
method to the class. The Eulerian
Path algorithm returns a list of
vertices along the path, which is
consistent with the Hamiltonian
Path algorithm. However, in our
case, we are less interested in the
series of vertices visited than we
are the series of edges. Thus,
eulerEdges(), returns the edge
labels along a path.

Comp 555 - Spring 2022

A visualization method for the graph

29

Creates a graph description
That can be rendered using
A package called "graphvis"

Available at:

 https://www.graphviz.org

Comp 555 - Spring 2022

Finding Minimal Superstrings with an Euler Path

30

Recall this took over 18 mins using the Hamiltonian path
approach, and 81 𝝁s with branch-and-bound

Comp 555 - Spring 2022

Our graph and its Euler path
● In this case our the graph was fully balanced. So the Euler Path is a cycle.
● Our tour starts arbitrarily with the first vertex, '000'

000 → 000 → 001 → 011 → 111 → 111 → 110 → 101 → 011 → 110 → 100 → 001 → 010 → 101 → 010 → 100 → 000

superstring = "0000111101100101000"

31

Comp 555 - Spring 2022

Next Time

32

Back to genome assembly

