
Comp 555 - BioAlgorithms - Spring 2022

Finding TFBS Motifs in our Lifetime

● Recall from last time that the Brute Force 
approach for finding a 10-mer motif 
common to 10 sequences of length 80 
bases was going to take more than 
30,000 years

● Today well consider alternative and 
non-obvious approaches for solving this 
problem

● We will trade one old man (us) for 
another (an Oracle)

There will be a Python/Jupyter crash course 

Tonight, JAN 27, from 5:00pm-6:30pm.



Comp 555 - Spring 2022

Recall from last lecture
The following set of 10 sequences have an embedded noisy motif, TAGATCCGAA.

 1 tagtggtcttttgagtgTAGATCTGAAgggaaagtatttccaccagttcggggtcacccagcagggcagggtgacttaat   TAGATCTGAA
 2 cgcgactcggcgctcacagttatcgcacgtttagaccaaaacggagtTGGATCCGAAactggagtttaatcggagtcctt   TGGATCCGAA
 3 gttacttgtgagcctggtTAGACCCGAAatataattgttggctgcatagcggagctgacatacgagtaggggaaatgcgt   TAGACCCGAA
 4 aacatcaggctttgattaaacaatttaagcacgTAAATCCGAAttgacctgatgacaatacggaacatgccggctccggg   TAAATCCGAA
 5 accaccggataggctgcttatTAGGTCCAAAaggtagtatcgtaataatggctcagccatgtcaatgtgcggcattccac   TAGGTCCAAA
 6 TAGATTCGAAtcgatcgtgtttctccctctgtgggttaacgaggggtccgaccttgctcgcatgtgccgaacttgtaccc   TAGATTCGAA
 7 gaaatggttcggtgcgatatcaggccgttctcttaacttggcggtgCAGATCCGAAcgtctctggaggggtcgtgcgcta   CAGATCCGAA
 8 atgtatactagacattctaacgctcgcttattggcggagaccatttgctccactacaagaggctactgtgTAGATCCGTA   TAGATCCGTA
 9 ttcttacacccttcttTAGATCCAAAcctgttggcgccatcttcttttcgagtccttgtacctccatttgctctgatgac   TAGATCCAAA
10 ctacctatgtaaaacaacatctactaacgtagtccggtctttcctgatctgccctaacctacaggTCGATCCGAAattcg   TCGATCCGAA
                                                                                      9+9+9+9+9
                                                                                      +8+9+9+8+10 = 89

2

Some notes:
1. There are no exact matches
2. The consensus motif gives a good consensus score

(perhaps it's not unique)

Computing a 
consensus Score



Comp 555 - Spring 2022

Consensus Scoring Function
● We developed an  O(k) consensus scoring function to address noise (inexact matches)
● But, we need to apply it an exponential number,  O(NM)  of times!
● Here's the scoring function...

3



Comp 555 - Spring 2022

And here's the Score we're looking for...

4

So even at a blazing 26μs we'll need many lifetimes to compute the 7010 scores

Do we 
have to 
compute 
every 
score?



Comp 555 - Spring 2022

Pruning Trees
● One method for reducing the computational cost of a search algorithm is to prune the space of permutations that 

could not possibly lead to a better answer than the current best answer.
● Pruning decisions are based on solutions to subproblems that appear early on and offer no hope
● How does this apply to our Motif finding problem?
● Consider any permutation of offsets that begins with the indices [25, 63, 10, 43, ....]. 

Just based on the first 4 indices the largest possible score is 17 + (6*10) = 77, which 
assumes that all 6 remaining strings match perfectly at all 10 positions.

  DNA[0][25:35]        a  a  g  g  g  a  a  a  g  t
  DNA[1][63:73]        g  t  t  t  a  a  t  c  g  g
  DNA[2][10:20]        a  g  c  c  t  g  g  t  t  a
  DNA[3][43:53]        t  t  g  a  c  c  t  g  a  t
                      ------------------------------
                    a [2, 1, 0, 1, 1, 2, 1, 1, 1, 1]
       Profile      c [0, 0, 1, 1, 1, 1, 0, 1, 0, 0]
                    g [1, 1, 2, 1, 1, 1, 1, 1, 2, 1]
                    t [1, 2, 1, 1, 1, 0, 2, 1, 1, 2]
                      [2, 2, 2, 1, 1, 2, 2, 1, 2, 2] Score = 17

If the best answer so far is 79, there is no need to consider the 706 offset permutations that start with these 4 indices. Why?

5



Comp 555 - Spring 2022

Pruning requires Trees; Search Trees
● Any method for enumerating permutations can be considered as a traversal of leaf nodes in a 

search tree
● Suppose after checking the first few offsets we can determine that any score of children nodes 

could not beat the best score seen so far?

6



Comp 555 - Spring 2022

Branch-and-Bound Motif Search
● Since each level of the tree goes deeper 

into search, discarding a prefix discards 
all following branches

● This saves us from looking at  
(N–k+1)M−depth  leaves

● Note our enumeration of tree-branches is 
depth-first

● We'll formulate of trimming algorithm as 
a recursive algorithm

7



Comp 555 - Spring 2022

Recursive Exploration of a Search Tree

8

Here is the M-deep "nested" 
for-loop that we discussed last 
time and implemented using the 
itertools (our frienemy)



Comp 555 - Spring 2022

Let’s try it

Recall that last time it took almost 13 mins to search the first 4 sequences.
Here we took nearly ¼ of that to search 6 sequences.

9



Comp 555 - Spring 2022

Observations
● For our problem instance, Branch-and-Bound Motif finding is significantly faster

○ It found a motif in the first 6 strings in less time than the Brute Force approach found a 
solution in the first 4 strings

○ More than 702≈5000 times faster
○ It did so by trimming more than 8 Million paths
○ Trimming added extra calls to Score (no worse than doubling 

the worst-case number of calls), but ended up saving even 
more hopeless calls along longer paths.

○ In practice, Branch-and-Bound, significantly improves
average performance

● Does this improve the worst-case performance from O(kNM)?
○ What if all of our motifs were placed at the end of each DNA string?
○ How do we avoid these worse case data sets?
○ Randomize the search-tree traversal order

10



Comp 555 - Spring 2022

A new approach
● Enumerating every possible permutation of motif positions is still not getting us the speed we want.
● Let's try another tried-and-tested approach to algorithm design, mixing up the problem

○ Suppose that some Oracle 
could tell us what the motif is...

○ How long would it take us to find 
its position in each string?

○ We could compute the Hamming 
Distance from our given motif to 
the k-mer at every position in each 
DNA sequence and keep track 
of the smallest distance and its 
position on each string.

○ These positions are our best guess 
of where the motif can be found on 
each string

● Let's call this approach scanning-and-scoring to find a given motif.

11



Comp 555 - Spring 2022

Scanning-and-Scoring a Motif

Wow, we can test over 900 motifs per second!

12



Comp 555 - Spring 2022

Scan-and-Score Motif Performance
● There are  M(N−k+1)  positions to test the motif,

and each test requires  k  tests.

So each scan is  O(MNk)

● So where where do we get candidate motifs?

● We could try all of them? 
○ There are  410 = 1048576  in our example.
○ 1048576 motifs × 1.09 mS ≈ 19 mins
○ Not fast, but much less than a lifetime
○ O(4kMNk) vs. O(NMk) 

● This approach is called a Median String Motif Search

● Recall from last Lecture that a string that minimizes Hamming distance is like finding a middle or 
median string that is closer to all instances than the instances are to each other.

13

Aren't we just trading off one exponential approach for another one? 



Comp 555 - Spring 2022

Let’s do it!

The right answer in under 20 mins! Much less than a lifetime.

14



Comp 555 - Spring 2022

Notes on Median String Motif Search
● Similarities between finding and alignment with minimal Hamming Distance 

and maximizing a Motif's consensus score.
● In fact, if instead of counting mismatches as in the code fragment:

HammingDist = sum([1 for i in range(k) if motif[i] != seq[s+i]])

we had counted matches
Matches = sum([1 for i in range(k) if motif[i] == seq[s+i]])

and found the maximum(TotalMatches) instead of the min(TotalHammingDistance) 
we would be using the same measure as Score().

● Thus, we expect MedianStringMotifSearch() to give the same answer as either 
BruteForceMotifSearch() or BranchAndBoundMotifSearch().

● However, the  4k  term raises some concerns. If k were instead 20, then we'd have to Scan-and-Score 
more than  1012  times. Another not-in-a-lifetime algorithm

● We can also apply the Branch-and-Bound approach to the Median string method, but, as before it 
would only improve the average case.

15



Comp 555 - Spring 2022

Other ways to guess the motif?
● If we knew that the motif that we are looking for was "contained"

somewhere in our DNA sequences we could test the  (N−k+1)M  
motifs from our DNA, giving a  O(N2M2)  algorithm.

● Unfortunately, as you may recall, our motif  does not actually 
appear in our data.

● Let’s not be discouraged and try it anyway

16



Comp 555 - Spring 2022

Let's consider only Motifs seen in the DNA

Not exactly the motif we wanted (off by a 'g'), [17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa’,
but it was fast!

17



Comp 555 - Spring 2022

Insights from the consensus score matrix
If we call Score([17, 31, 18, 33, 21, 0, 46, 70, 16, 65], seqApprox, 10)

DNA[0][17:27]    t  a  g  a  t  c  t  g  a  a
DNA[1][31:41]    t  a  g  a  c  c  a  a  a  a
DNA[2][18:28]    t  a  g  a  c  c  c  g  a  a
DNA[3][33:43]    t  a  a  a  t  c  c  g  a  a
DNA[4][21:31]    t  a  g  g  t  c  c  a  a  a
DNA[5][ 0:10]    t  a  g  a  t  t  c  g  a  a
DNA[6][46:56]    c  a  g  a  t  c  c  g  a  a
DNA[7][70:80]    t  a  g  a  t  c  c  g  t  a
DNA[8][16:26]    t  a  g  a  t  c  c  a  a  a
DNA[9][65:75]    t  c  g  a  t  c  c  g  a  a

                ------------------------------
              a [0, 9, 1, 9, 0, 0, 1, 3, 9,10]
              c [1, 1, 0, 0, 2, 9, 8, 0, 0, 0]
              g [0, 0, 9, 1, 0, 0, 0, 7, 0, 0]
              t [9, 0, 0, 0, 8, 1, 1, 0, 1, 0]
                [9, 9, 9, 9, 8, 9, 8, 7, 9,10]  Score = 87
Consensus        t  a  g  a  t  c  c  g  a  a   Our motif!

Any Ideas?
18

This is the "contained" string. 
Had to be here. Why?

The only different 
offset value.



Comp 555 - Spring 2022

Contained-Consensus Motif Search

Look for a "contained" motif, and then do one last scoring pass with the
                                                                      consensus motif. That was fast! 19

The consensus motif's hamming distance can be 
no more than the "contained" string's. Why?



Comp 555 - Spring 2022

Dad, are we there yet?
● We got the answer that we were looking for, but
● How can we be sure it will always give the correct answer?

○ Our other methods (branch and bound & median search)
were exhaustive, they examined every possibility

○ This method considers only a subset of possible 
solutions, and picks the best one in a greedy fashion

○ What if there had been ties among the candidate motifs?
○ What if the consensus score (87% matches) had been lower
○ Would we, should we, be satisfied?

● It's one thing to be greedy, and another to be both greedy and biased
○ Our method is greedy in that it considers only the best contained 

motif, greedy methods are subject to falling into local minimums
○ Since we consider only subsequences as motifs we introduce bias

● Recall that Consensus can generate motifs not seen in our data

20



Comp 555 - Spring 2022

A randomized approach to motif finding
● One way to avoid bias and local minima is to introduce randomness
● We can generate candidate motifs from our data by treating the set of all 

possible offsets as a distribution
○ Likely motif candidates from this distribution are 

those generated by Consensus
○ Consensus strings can then be tested using Scan-and-Score 

and these alignments lead to new consensus strings
○ Eventually, we should converge to some local minimal answer

● To avoid finding a local minimum, we try several random starts, 
and search for the best score amongst all these starts.

● A randomized algorithm does not guarantee an optimal solution. 
Instead it promises a good/plausible answer on average, and one 
that is not susceptible to a worse-case data sets as our 
greedy/biased method was.

21



Comp 555 - Spring 2022

A Randomized Motif Search

22

Creates 500 random 
"offset" vectors, find's 
their consensus motif, 
and uses these 500 as 
candidate k-mers. 

Score each candidate and see if it's 
offsets lead to a new motif candidate. 
If so add it to the next set to be 
considered.   

This set union keeps track of all the 
k-mers we've considered.  



Comp 555 - Spring 2022

Let’s try it

Randomized algorithms need to be run multiple times to insure a stable solution

23



Comp 555 - Spring 2022

Lessons Learned
● We can find Motifs in our lifetime

○ Practical exhaustive search algorithm for small k, MedianStringMotifSearch()
○ Practical fast algorthim RandomizedMotifSearch(DNA, k)

● Three algorithm design approaches "Branch-and-Bound", "Greedy", and "Randomized"
● Reversing the objective, guessing an answer, and validating it (Needs good guesses).
● The power of randomness

○ Not susceptible to worse case data
○ Avoids local minimums that plague some greedy algorithms

24


