
Comp 555 - BioAlgorithms - Spring 2022

Finding TFBS Motifs in our Lifetime

● Recall from last time that the Brute Force 
approach for finding a 10-mer motif 
common to 10 sequences of length 80 
bases was going to take more than 
30,000 years

● Today well consider alternative and 
non-obvious approaches for solving this 
problem

● We will trade one old man (us) for 
another (an Oracle)

There will be a Python/Jupyter crash course 

Tonight, JAN 27, from 5:00pm-6:30pm.
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Recall from last lecture
The following set of 10 sequences have an embedded noisy motif, TAGATCCGAA.

 1 tagtggtcttttgagtgTAGATCTGAAgggaaagtatttccaccagttcggggtcacccagcagggcagggtgacttaat   TAGATCTGAA
 2 cgcgactcggcgctcacagttatcgcacgtttagaccaaaacggagtTGGATCCGAAactggagtttaatcggagtcctt   TGGATCCGAA
 3 gttacttgtgagcctggtTAGACCCGAAatataattgttggctgcatagcggagctgacatacgagtaggggaaatgcgt   TAGACCCGAA
 4 aacatcaggctttgattaaacaatttaagcacgTAAATCCGAAttgacctgatgacaatacggaacatgccggctccggg   TAAATCCGAA
 5 accaccggataggctgcttatTAGGTCCAAAaggtagtatcgtaataatggctcagccatgtcaatgtgcggcattccac   TAGGTCCAAA
 6 TAGATTCGAAtcgatcgtgtttctccctctgtgggttaacgaggggtccgaccttgctcgcatgtgccgaacttgtaccc   TAGATTCGAA
 7 gaaatggttcggtgcgatatcaggccgttctcttaacttggcggtgCAGATCCGAAcgtctctggaggggtcgtgcgcta   CAGATCCGAA
 8 atgtatactagacattctaacgctcgcttattggcggagaccatttgctccactacaagaggctactgtgTAGATCCGTA   TAGATCCGTA
 9 ttcttacacccttcttTAGATCCAAAcctgttggcgccatcttcttttcgagtccttgtacctccatttgctctgatgac   TAGATCCAAA
10 ctacctatgtaaaacaacatctactaacgtagtccggtctttcctgatctgccctaacctacaggTCGATCCGAAattcg   TCGATCCGAA
                                                                                      9+9+9+9+9
                                                                                      +8+9+9+8+10 = 89
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Some notes:
1. There are no exact matches
2. The consensus motif gives a good consensus score

(perhaps it's not unique)

Computing a 
consensus Score
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Consensus Scoring Function
● We developed an  O(k) consensus scoring function to address noise (inexact matches)
● But, we need to apply it an exponential number,  O(NM)  of times!
● Here's the scoring function...
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And here's the Score we're looking for...

4

So even at a blazing 26μs we'll need many lifetimes to compute the 7010 scores

Do we 
have to 
compute 
every 
score?
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Pruning Trees
● One method for reducing the computational cost of a search algorithm is to prune the space of permutations that 

could not possibly lead to a better answer than the current best answer.
● Pruning decisions are based on solutions to subproblems that appear early on and offer no hope
● How does this apply to our Motif finding problem?
● Consider any permutation of offsets that begins with the indices [25, 63, 10, 43, ....]. 

Just based on the first 4 indices the largest possible score is 17 + (6*10) = 77, which 
assumes that all 6 remaining strings match perfectly at all 10 positions.

  DNA[0][25:35]        a  a  g  g  g  a  a  a  g  t
  DNA[1][63:73]        g  t  t  t  a  a  t  c  g  g
  DNA[2][10:20]        a  g  c  c  t  g  g  t  t  a
  DNA[3][43:53]        t  t  g  a  c  c  t  g  a  t
                      ------------------------------
                    a [2, 1, 0, 1, 1, 2, 1, 1, 1, 1]
       Profile      c [0, 0, 1, 1, 1, 1, 0, 1, 0, 0]
                    g [1, 1, 2, 1, 1, 1, 1, 1, 2, 1]
                    t [1, 2, 1, 1, 1, 0, 2, 1, 1, 2]
                      [2, 2, 2, 1, 1, 2, 2, 1, 2, 2] Score = 17

If the best answer so far is 79, there is no need to consider the 706 offset permutations that start with these 4 indices. Why?
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Pruning requires Trees; Search Trees
● Any method for enumerating permutations can be considered as a traversal of leaf nodes in a 

search tree
● Suppose after checking the first few offsets we can determine that any score of children nodes 

could not beat the best score seen so far?

6



Comp 555 - Spring 2022

Branch-and-Bound Motif Search
● Since each level of the tree goes deeper 

into search, discarding a prefix discards 
all following branches

● This saves us from looking at  
(N–k+1)M−depth  leaves

● Note our enumeration of tree-branches is 
depth-first

● We'll formulate of trimming algorithm as 
a recursive algorithm
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Recursive Exploration of a Search Tree
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Here is the M-deep "nested" 
for-loop that we discussed last 
time and implemented using the 
itertools (our frienemy)
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Let’s try it

Recall that last time it took almost 13 mins to search the first 4 sequences.
Here we took nearly ¼ of that to search 6 sequences.
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Observations
● For our problem instance, Branch-and-Bound Motif finding is significantly faster

○ It found a motif in the first 6 strings in less time than the Brute Force approach found a 
solution in the first 4 strings

○ More than 702≈5000 times faster
○ It did so by trimming more than 8 Million paths
○ Trimming added extra calls to Score (no worse than doubling 

the worst-case number of calls), but ended up saving even 
more hopeless calls along longer paths.

○ In practice, Branch-and-Bound, significantly improves
average performance

● Does this improve the worst-case performance from O(kNM)?
○ What if all of our motifs were placed at the end of each DNA string?
○ How do we avoid these worse case data sets?
○ Randomize the search-tree traversal order
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A new approach
● Enumerating every possible permutation of motif positions is still not getting us the speed we want.
● Let's try another tried-and-tested approach to algorithm design, mixing up the problem

○ Suppose that some Oracle 
could tell us what the motif is...

○ How long would it take us to find 
its position in each string?

○ We could compute the Hamming 
Distance from our given motif to 
the k-mer at every position in each 
DNA sequence and keep track 
of the smallest distance and its 
position on each string.

○ These positions are our best guess 
of where the motif can be found on 
each string

● Let's call this approach scanning-and-scoring to find a given motif.
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Scanning-and-Scoring a Motif

Wow, we can test over 900 motifs per second!
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Scan-and-Score Motif Performance
● There are  M(N−k+1)  positions to test the motif,

and each test requires  k  tests.

So each scan is  O(MNk)

● So where where do we get candidate motifs?

● We could try all of them? 
○ There are  410 = 1048576  in our example.
○ 1048576 motifs × 1.09 mS ≈ 19 mins
○ Not fast, but much less than a lifetime
○ O(4kMNk) vs. O(NMk) 

● This approach is called a Median String Motif Search

● Recall from last Lecture that a string that minimizes Hamming distance is like finding a middle or 
median string that is closer to all instances than the instances are to each other.
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Aren't we just trading off one exponential approach for another one? 
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Let’s do it!

The right answer in under 20 mins! Much less than a lifetime.
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Notes on Median String Motif Search
● Similarities between finding and alignment with minimal Hamming Distance 

and maximizing a Motif's consensus score.
● In fact, if instead of counting mismatches as in the code fragment:

HammingDist = sum([1 for i in range(k) if motif[i] != seq[s+i]])

we had counted matches
Matches = sum([1 for i in range(k) if motif[i] == seq[s+i]])

and found the maximum(TotalMatches) instead of the min(TotalHammingDistance) 
we would be using the same measure as Score().

● Thus, we expect MedianStringMotifSearch() to give the same answer as either 
BruteForceMotifSearch() or BranchAndBoundMotifSearch().

● However, the  4k  term raises some concerns. If k were instead 20, then we'd have to Scan-and-Score 
more than  1012  times. Another not-in-a-lifetime algorithm

● We can also apply the Branch-and-Bound approach to the Median string method, but, as before it 
would only improve the average case.

15



Comp 555 - Spring 2022

Other ways to guess the motif?
● If we knew that the motif that we are looking for was "contained"

somewhere in our DNA sequences we could test the  (N−k+1)M  
motifs from our DNA, giving a  O(N2M2)  algorithm.

● Unfortunately, as you may recall, our motif  does not actually 
appear in our data.

● Let’s not be discouraged and try it anyway
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Let's consider only Motifs seen in the DNA

Not exactly the motif we wanted (off by a 'g'), [17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa’,
but it was fast!
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Insights from the consensus score matrix
If we call Score([17, 31, 18, 33, 21, 0, 46, 70, 16, 65], seqApprox, 10)

DNA[0][17:27]    t  a  g  a  t  c  t  g  a  a
DNA[1][31:41]    t  a  g  a  c  c  a  a  a  a
DNA[2][18:28]    t  a  g  a  c  c  c  g  a  a
DNA[3][33:43]    t  a  a  a  t  c  c  g  a  a
DNA[4][21:31]    t  a  g  g  t  c  c  a  a  a
DNA[5][ 0:10]    t  a  g  a  t  t  c  g  a  a
DNA[6][46:56]    c  a  g  a  t  c  c  g  a  a
DNA[7][70:80]    t  a  g  a  t  c  c  g  t  a
DNA[8][16:26]    t  a  g  a  t  c  c  a  a  a
DNA[9][65:75]    t  c  g  a  t  c  c  g  a  a

                ------------------------------
              a [0, 9, 1, 9, 0, 0, 1, 3, 9,10]
              c [1, 1, 0, 0, 2, 9, 8, 0, 0, 0]
              g [0, 0, 9, 1, 0, 0, 0, 7, 0, 0]
              t [9, 0, 0, 0, 8, 1, 1, 0, 1, 0]
                [9, 9, 9, 9, 8, 9, 8, 7, 9,10]  Score = 87
Consensus        t  a  g  a  t  c  c  g  a  a   Our motif!

Any Ideas?
18

This is the "contained" string. 
Had to be here. Why?

The only different 
offset value.
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Contained-Consensus Motif Search

Look for a "contained" motif, and then do one last scoring pass with the
                                                                      consensus motif. That was fast! 19

The consensus motif's hamming distance can be 
no more than the "contained" string's. Why?
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Dad, are we there yet?
● We got the answer that we were looking for, but
● How can we be sure it will always give the correct answer?

○ Our other methods (branch and bound & median search)
were exhaustive, they examined every possibility

○ This method considers only a subset of possible 
solutions, and picks the best one in a greedy fashion

○ What if there had been ties among the candidate motifs?
○ What if the consensus score (87% matches) had been lower
○ Would we, should we, be satisfied?

● It's one thing to be greedy, and another to be both greedy and biased
○ Our method is greedy in that it considers only the best contained 

motif, greedy methods are subject to falling into local minimums
○ Since we consider only subsequences as motifs we introduce bias

● Recall that Consensus can generate motifs not seen in our data
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A randomized approach to motif finding
● One way to avoid bias and local minima is to introduce randomness
● We can generate candidate motifs from our data by treating the set of all 

possible offsets as a distribution
○ Likely motif candidates from this distribution are 

those generated by Consensus
○ Consensus strings can then be tested using Scan-and-Score 

and these alignments lead to new consensus strings
○ Eventually, we should converge to some local minimal answer

● To avoid finding a local minimum, we try several random starts, 
and search for the best score amongst all these starts.

● A randomized algorithm does not guarantee an optimal solution. 
Instead it promises a good/plausible answer on average, and one 
that is not susceptible to a worse-case data sets as our 
greedy/biased method was.
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A Randomized Motif Search

22

Creates 500 random 
"offset" vectors, find's 
their consensus motif, 
and uses these 500 as 
candidate k-mers. 

Score each candidate and see if it's 
offsets lead to a new motif candidate. 
If so add it to the next set to be 
considered.   

This set union keeps track of all the 
k-mers we've considered.  
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Let’s try it

Randomized algorithms need to be run multiple times to insure a stable solution
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Lessons Learned
● We can find Motifs in our lifetime

○ Practical exhaustive search algorithm for small k, MedianStringMotifSearch()
○ Practical fast algorthim RandomizedMotifSearch(DNA, k)

● Three algorithm design approaches "Branch-and-Bound", "Greedy", and "Randomized"
● Reversing the objective, guessing an answer, and validating it (Needs good guesses).
● The power of randomness

○ Not susceptible to worse case data
○ Avoids local minimums that plague some greedy algorithms
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