
Comp 555 - BioAlgorithms - Spring 2022

Finding Patterns in DNA

Login to Course Website

1) Login to your Comp555 account

				Logg	ed in as: <i>guest</i>	Log in			
actttcgactcagtgg	cctttcaacggaac	ctacacatagcaa	cacgagtggacatg	gactagggtccaad	cataataatgtg	ccgtg			
acaaagcacag	OMD	ticipation		cctace	totagate	gota			
gactcctgtggatt		000 -	Sprin			golou			
acdatdacdaddco	deleto ana dela	cttaacaaaaaaa	tttdagtaaggaagto	ttacitiagoctata	aaaadtacca	icdad			
	Home	Research	Courses	Publications					
Announcements	5								
[Zoom Lectures Link]									
 January 13: Last day to fill out the roster form January 12: My SARS-C0V-2 PCR test was negative (not detected). The campus positivity rate is 13.18% January 11: First class meeting. See you there. <u>Class Roster</u> January 10: I am vaccinated (3/10/21) and boosted (10/25/21). I intend to be tested regularly (weekly) as long as the positivity rate on campus is over 5%. My last test on 12/28/2021 was negative. 									

2) Your username is your UNC ONYEN and password is your PID

Username:	guest
Password:	
	Login

Next Steps

3) Once you are logged in, press "Course" and then a "Setup" button should appear. Press "Setup" and you should see something like:

Comp555S22 Problem Sets and Exams:					
Comp555S22 Exercises:	-class Exercise				
Exercises:					
leehart has submitted 1 of 1 exercises					
Exercise01:					
https://forms.gle/RRzwd1uitpbcvHzHA					
	Your Profile	1			
Usernam	e: leehart				
First Nam	e: Lee				
Last Nam	e: Hart				
Ema	il: leehart@email.unc.edu				
Institutio	n: Comp5555822				
New Passwor	d:				
Verify Passwor	d:				
	Update				

4) (BTW, you can also change your password here if you want).

For those without a login...

• Go back to the login page, and click "registered"

Username:	guest
Password:	
	Login

No password is required to logon as "guest" You must be<mark>registered</mark> to have full access or modify content.

- Then enter the following information:
- Once registered a screen will indicate you've been verified; then click "Course" and "Setup" as before.
- Don't repeat this again, for example if you forget your password

	MUST be your ONYEN
Username:	leehart
First Name:	Lee
Last Name:	Hart Your UNC email
Email:	leehart@email.unc.edu
Institution:	Comp555F22
Password:	•••••
Verify Password:	•••••
R	egister

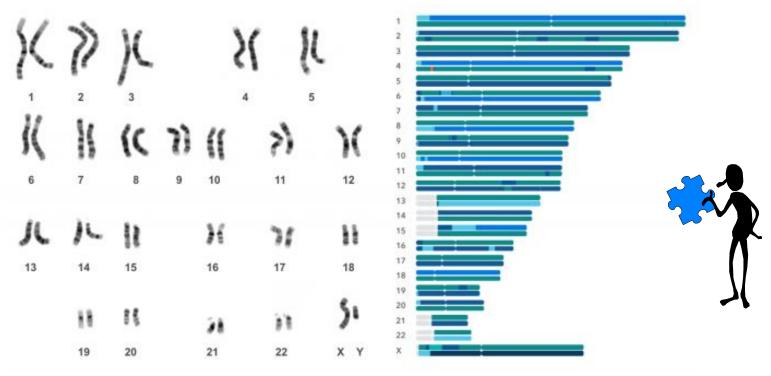
You've seen a small genome... now let's scale up

In [4]: import gzip In [5]: def loadFasta(filename): """ Parses a classically formatted and possibly compressed FASTA file into a list of headers and fragment sequences for each sequence contained""" if (filename.endswith(".gz")): This is the same FASTA fp = gzip.open(filename, 'r') format file parser from else: last lecture fp = open(filename, 'r') # split at headers data = fp.read().split('>') fp.close() # ignore whatever appears before the 1st header data.pop(0) headers = [] sequences = [] for sequence in data: lines = sequence.split('\n') headers.append(lines.pop(0)) # add an extra "+" to make string "1-referenced" sequences.append('+' + ''.join(lines)) return (headers, sequences) In [*]: header, seq = loadFasta("data/GCA_000001405.15_GRCh38_genomic.fna.gz print(len(header), "sequences") This is a recent version for i in range(len(header)): of the human genome. if header[i].startswith("CM") or header[i].startswith("J0"): But, we're only going to print(header[i]) look at part of it. print(len(seq[i])-1, "bases", seq[i][:30], "...", seq[i][-30:])

What's inside

Human DNA

- Is distributed across 23 primary chromosomes named 1-22, an X.
- We actually have two copies of of the numbered chromosomes, and two copies of X if you are female or one X and one Y if you are male.
- There is also a short DNA sequence that appears in a cell organelles called mitochondria.
- There are also 430 other "unmapped" sequences


455 sequences

CM000663.2 Homo sapiens chromosome 1, GRCh38 reference primary assembly CM000664.2 Homo sapiens chromosome 2, GRCh38 reference primary assembly CM000665.2 Homo sapiens chromosome 3, GRCh38 reference primary assembly CM000666.2 Homo sapiens chromosome 4, GRCh38 reference primary assembly CM000667.2 Homo sapiens chromosome 5, GRCh38 reference primary assembly CM000668.2 Homo sapiens chromosome 6, GRCh38 reference primary assembly CM000669.2 Homo sapiens chromosome 7, GRCh38 reference primary assembly CM000670.2 Homo sapiens chromosome 8, GRCh38 reference primary assembly CM000671.2 Homo sapiens chromosome 9, GRCh38 reference primary assembly CM000672.2 Homo sapiens chromosome 10, GRCh38 reference primary assembly CM000673.2 Homo sapiens chromosome 11, GRCh38 reference primary assembly CM000674.2 Homo sapiens chromosome 12, GRCh38 reference primary assembly CM000675.2 Homo sapiens chromosome 13, GRCh38 reference primary assembly CM000676.2 Homo sapiens chromosome 14, GRCh38 reference primary assembly CM000677.2 Homo sapiens chromosome 15, GRCh38 reference primary assembly CM000678.2 Homo sapiens chromosome 16. GRCh38 reference primary assembly CM000679.2 Homo sapiens chromosome 17, GRCh38 reference primary assembly CM000680.2 Homo sapiens chromosome 18, GRCh38 reference primary assembly CM000681.2 Homo sapiens chromosome 19, GRCh38 reference primary assembly CM000682.2 Homo sapiens chromosome 20, GRCh38 reference primary assembly CM000683.2 Homo sapiens chromosome 21, GRCh38 reference primary assembly CM000684.2 Homo sapiens chromosome 22, GRCh38 reference primary assembly CM000685.2 Homo sapiens chromosome X, GRCh38 reference primary assembly CM000686.2 Homo sapiens chromosome Y, GRCh38 reference primary assembly J01415.2 Homo sapiens mitochondrion, complete genome 16569 bases +GATCACAGGTCTATCACCCCTATTAACCAC ... CACGTTCCCCTTAAATAAGACATCACGATG

Missing Puzzle Pieces

There are still missing, partially assembled, pieces, that we don't yet know where they are placed.

What it's sequence looks like

As with SARS-CoV-2, we can get some insights into a genome by examining its k-mer distributions. But before we start, let's look consider the genome's size?

- In total, there are 3,272,116,950 base pairs in the primary (forward) sequence
- Many of these are unknown, and are indicated by 'N'
- There are also a small number of ambiguous bases indicated using a standard called UIPAC

nromosome lengths	Total lengths Ungappe			unts						
Chromosome lengths ar Chromosome	Total length (bp)	GenBank acces			fSea	acc	essi	on		
1	248.956.422	CM000663.2								
2	242,193,529	CM000664.2		N	C_000	0002	.12			
3	198,295,559	CM000665.2		N	C_000	0003	.12			
4	190,214,555	CM000666.2		N	000_0	0004	.12	8		
5	181,538,259	CM000667.2	1	UPAC deg	gener	ate I	oase	e syı	mbo	ols ^[2]
6	170,805,979	CM000668.2	Description	Symbol	Bas	es re	pre	sen	ted	Complementar
7	159,345,973	CM000669.2			No.	Α	С	G	Т	bases ^[a]
			Adenine	A		A				Т
8	145,138,636	CM000670.2	Cytosine	С			С			G
9	138,394,717	CM000671.2	Guanine	G	1			G	-	С
10	133,797,422	CM000672.2	Thymine	T		_		_	Т	A
11	135,086,622	CM000673.2	Uracil Weak	w		A			U	A
12	133,275,309	CM000674.2	Strong	S		A	С	G	1	S
13	114,364,328	CM000675.2	Amino	M		A	c	0		ĸ
14	107,043,718	CM000676.2	Keto	ĸ	2	-	-	G	т	м
15	101,991,189	CM000677.2	Purine	R		A		G		Y
			Pyrimidine	Y			С		Т	R
16	90,338,345	CM000678.2	Not A ^[b]	в			С	G	т	V
17	83,257,441	CM000679.2	Not C ^[b]	D		Α		G	Т	H
18	80,373,285	CM000680.2	Not G ^[b]	н	3	Α	С		Т	D
19	58,617,616	CM000681.2	Not T ^[b]	V		Α	С	G		В
20	64,444,167	CM000682.2	Any one base	N	4	Α	С	G	Т	N
21	46,709,983	CM000683.2	Zero	Z	0					Z
22	50,818,468	CM000684.2	 a. * I.e., here, read the represented bases in reverse. b. * ^a b ^c d^d Represented by the letter following (excluding U). 							
х	156,040,895	CM000685.2	NC_000023.11							

Let's reformat our sequences

It's a little annoying to load a series of sequences from FASTA files over and over again. Especially when we will mostly deal with a subset, and of those we will consider them one at a time.

So I decided to write out each sequence as a single string to its own file.

```
In [ ]: header, seq = loadFasta("data/GCA_000001405.15_GRCh38_genomic.fna.gz")
print(len(header), "sequences")
for i in range(len(header)):
    if header[i].startswith("CM") or header[i].startswith("J0"):
        start = header[i].find('chromosome ')
        chromo = header[i][start+11:header[i].find(',')] if (start >= 0) else "MT"
        with open("data/Chr%s.seq" % chromo, 'w') as fp:
            fp.write(seq[i])
```

You might want to wait and do this later.

Comp 555 - Spring 2022

In []:

A quick helpful function

- DNA is actually two sequences, a primary and reverse-complement version
- Genomes report only one (the primary one), and the reverse complement version can be derived from it.
- When we consider k-mers, in most cases, we don't care which of the sequences they come from
 We didn't consider the reverse complement
- Here's a simple function that maps back and forth

return ''.join([{'A':'T','C':'G','G':'C','T':'A'}[base] for base in reversed(dnaSeq)])

• Here's an example:

```
In [4]: print(revComp("GAGACAT"))
print(revComp("ATGTCTC"))
ATGTCTC
GAGACAT
```

def revComp(dnaSeq):

sequence of our viral genome because it was an RNA genome.

Let's consider some k-mer statistics

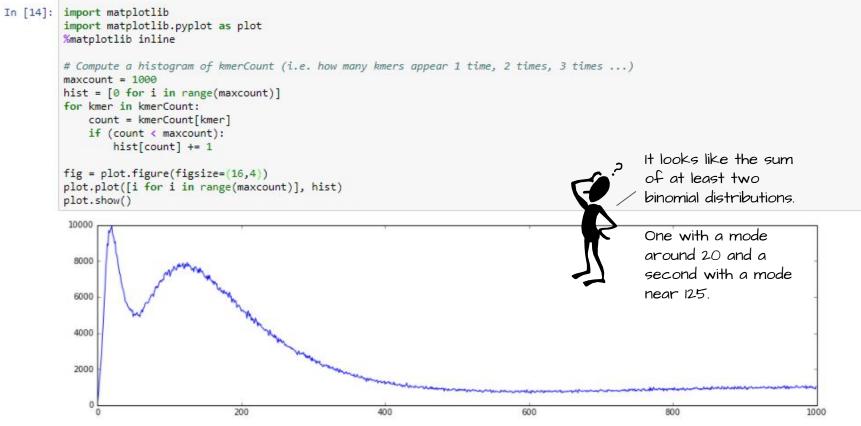
For what value of k?

```
In [ ]: import time
              chromo = [str(i) for i in xrange(1,23)] + ['X', 'Y', 'MT']
              kmerCount = {}
              K = 11
              1 = 0
A "for-else"
              for contig in chromo:
                  tick = time.time()
statement.
                  with open("Chr%s.seq" % contig, 'r') as fp:
Have you seen
                      seq = fp.read()
one of those
                  for i in xrange(1,len(seq)-K+1):
before?
                      kmer = sea[i:i+K]
                      for base in "RYSWKMBDHVN":
                          if (base in kmer):
                              break
                      else:
                          kmerCount[kmer] = kmerCount.get(kmer,0) + 1
                          kmer = revComp(kmer)
                          kmerCount[kmer] = kmerCount.get(kmer,0) + 1
                  tock = time.time()
                  print(contig, len(seq)-1, len(kmerCount), "%6.2f secs" % (tock - tick))
                  tick = tock
                  L += len(seq) - 1
              print(L, len(kmerCount))
```

This is similar to our kmer counter from last lecture, except every k-mer is consider twice. Once as it appears, and once as it's reverse complement.

We'll also skip over any k-mer with an 'N' or with one of those strange IUPAC bases.

DON'T RUN IT!



'1', 248956422, 4133410, '1388.88 secs' '2', 242193529, 4175438, '1364.77 secs' '3', 198295559, 4184312, '1064.28 secs' '4', 190214555, 4188228, '1155.32 secs' '5', 181538259, 4190446, '1031.80 secs' '6', 170805979, 4191700, '930,77 secs' '7', 159345973, 4192490, '1025.24 secs' '8', 145138636, 4192908, '931.29 secs' '9', 138394717, 4193190, '751.69 secs' '10', 133797422, 4193464, '827.02 secs' '11', 135086622, 4193648, '780.05 secs' '12'. 133275309. 4193788. '724.03 secs' '13', 114364328, 4193862, '635.01 secs' '14', 107043718, 4193926, '534.36 secs' '15', 101991189, 4193988, '530.65 secs' '16', 90338345, 4194048, '478.42 secs' '17'. 83257441. 4194088. '447.81 secs' '18', 80373285, 4194110, '448.31 secs' '19', 58617616, 4194136, '345.26 secs' '20', 64444167, 4194158, '363.14 secs' '21', 46709983, 4194166, '251.95 secs' '22', 50818468, 4194182, '253.91 secs' 'X', 156040895, 4194200, '866.71 secs' 'Y'. 57227415. 4194200. '189.44 secs' 'MT', 16569, 4194200, ' 0.10 secs' 3088286401, 4194200

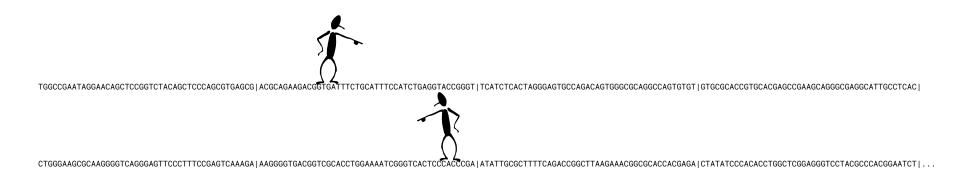
- It takes a while to run (there are actually faster ways to do this!)
- 1000 secs is around 16 minutes
- And we still don't see every possible 11-mer

What does the distribution look like?

What could we learn from other values of k

- Our genome includes every possible 11-mer
- How large should k be so that we'd expect most k-mers to be unique?
- Recall the genome has 3,272,116,950 bases

There are 4.194.304 11-mers There are 67,108,864 13-mers There are 1,073,741,824 15-mers There are 17.179.869.184 17-mers There are 274,877,906,944 19-mers There are 4,398,046,511,104 21-mers There are 70,368,744,177,664 23-mers There are 1.125.899.906.842.624 25-mers There are 18,014,398,509,481,984 27-mers There are 288,230,376,151,711,744 29-mers There are 4,611,686,018,427,387,904 31-mers There are 73,786,976,294,838,206,464 33-mers There are 1,180,591,620,717,411,303,424 35-mers There are 18,889,465,931,478,580,854,784 37-mers There are 302,231,454,903,657,293,676,544 39-mers There are 4,835,703,278,458,516,698,824,704 41-mers There are 77,371,252,455,336,267,181,195,264 43-mers There are 1,237,940,039,285,380,274,899,124,224 45-mers


What's with all the odd numbers?

The genome is much smaller than this, thus, repeats are unlikely by chance

While I was bored last night...

I broke the human genome into non-overlapping 45-mers, and counted how many times each appears in the genome...

Most places look like this...

Chromosome 4

Chromosome	4
79935885	1 TCCAGCTGTTGCATAGCTTTGTTAAAGAGTGACACTTAGGCTAAT
79935930	1 GTACTCTAAGGAAATGACTCCGCTCCCAGTGGAATCTCTCTTCTG
79935975	1 AAACAATAAATGCCTGTTCCAACAAAAGAGCACCTTAAACTATGA
79936020	1 TTCCATTCCAAAGTTGTAAAAAAATGGAATTAATTAGGATTTAGC
79936065	1 AAGTGTACAACCTCTAGCCAGGAGTCATATATTCTAATTTTGAGA
79936110	1 TATTATTCATAGTTCTCAATGCAGAGAGTTACTACACATTATTTT
79936155	1 TACTATCAGTACAATACCACTTTTTAAAAGGGTTCAGATGTTTTA
79936200	1 ATCACTATTACACAAGTACTACAAATGATATAATTAGTTGCATTC
79936245	1 TTATTTGCAGAATATTTAATTGATCTCTATTCAGATAAATTTTTA
79936290	1 AATGACAAAATGCTATTTAACTGTCTTATTTTCAGACCTCCTGTC
79936335	1 ATCAGAGCTTAGCTACTCTCTTTCAAAACCATTACTATTCTCCTT
79936380	1 CACAACCTAGCACTAAAACTGGTTGCACTGCATTAGAACTCTGCT
79936425	1 TAGGTACTTCCTATGCAAGTTTTCTCCTTCATCTCACAAACCAAAA
79936470	1 CCTAAATGAACAATCAAAACATTCTCACATTTTTCTAATTCTCCA
79936515	1 AAAGTTTCCTTTTCTTTCAAGGTAATTTATGTCCTCATAAAAGCT
79936560	1 TAGGTATAATTCCTGATGGGAGAAATTAGTGAAATATTTCAACAG
79936605	1 TATTCAAGTTGGTCTCAGGGACTGGGAAATAATGCAAAAGAAATA
79936650	1 AAAAAAATCCTTTATTAAACGTAAAAGGGAAGAAGAAAAAGACTAA
79936695	1 CACATGAAATAATTAGAAAACAATTAATTTAAAAAATTACTGCACA
79936740	1 ATATTTAAACTAATTCACTTTAAGTTCTGATTATTAATTGCACTA
79936785	1 TGGGTTATAATCACCTTTTTTGTGCTTATAATCATTCCCACCTAG
79936830	1 TACAATGGTACTACACTAGTAGTACCACACTAAAGGTACTACACT
79936875	1 CTACCACTGTACTAACCAATGGTAAAAACTACACTTATATTTTCT
79936920	1 ATTTTTTTTTTCTATCACTTGTATAATGCTAGGCAGAAAGTCAGCAAG
79936965	1 CAATGGATAATTGATTATGTATTCATTCAATCATTTTAAAGCATT
79937010	1 TTTCATTTTAATCTTTGTTGCAAAGAAGAAAAATGTATTAATAAT
79937055	1 TTTTACTTTTAATAAATACATTAGCATTAACTTTATACAGTTTTA
79937100	1 AAACACTCATAAACTTAATTAAGCTTTTAATTCAGTTATAAATAG
79937145	1 GACTCATTCACTGTATTCTCAACAGTAGCATTAAAAAAAA
79937190	1 GCCTATTTCATATTCTTAATGAAGCAATTGCTAGCAATAGGAAAA
79937235	1 CCTCAAAAGATTCACATTTGGCTCAACTAAGTTCCTTGAAAATTA
79937280	1 ATTACATATAATCATTTAAAACAGCACAAAATTGAGCAGAAGAAA
79937325	1 AAAAATTTTTGGAAGAATGTTTGTAATATCCATAAATGTTTAGGC
79937370	1 TAGTTTGGCTGGTTTCTGATTAACTGCATTTGGACATATCTTCAT
79937415	1 TGAAAGTTTCACTGTAACATACTCACAGAAAGCTTTTTATCTGCA
79937460	1 AGTGACTTTTTGTGCCACTTGCTTGGGCCACTTTTTCCCAACTCT
79937505	1 AATTTGCAATTTGTATCTACCCTGAGAGAGGTACTGTCTATCAGG
79937550	1 GTATATAGTACCATACTCAAACAGATTTGTTCCGTTATCTAAACT
79937595	1 AGAAATAAATAAATCATAAAATGTTATGTGTCACTAACAAGGTAA
79937640	1 CAACTTGAATGCTTATGTATATATTGAGCATCAATTATGTACCCA

As you'd expect, most 45-mers are unique.

But, occasionally, we run into a series that are repeated all over the genome.

And, they aren't trivial repetitive sequences.

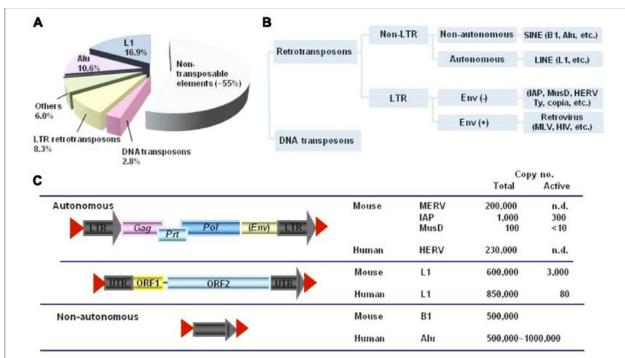
Chromosome 4 79937415 1 TGAAAGTTTCACTGTAACATACTCACAGAAAGCTTTTTATCTGCA 79937460 1 AGTGACTTTTTGTGCCACTTGCTTGGGCCACTTTTTCCCAACTCT 79937505 1 AATTTGCAATTTGTATCTACCCTGAGAGAGGTACTGTCTATCAGG 79937550 1 GTATATAGTACCATACTCAAACAGATTTGTTCCGTTATCTAAACT 79937595 1 AGAAATAAATAAATCATAAAATGTTATGTGTCACTAACAAGGTAA 79937640 1 CAACTTGAATGCTTATGTATATATTGAGCATCAATTATGTACCCA 79937685 1 GCACTGTGATAGTGTTTTTAAAACCCCCTAAGAGAGGAGCCAAGA 79937730 645 TGGCCGAATAGGAACAGCTCCGGTCTACAGCTCCCAGCGTGAGCG 79937775 108 ACGCAGAAGACGGTGATTTCTGCATTTCCATCTGAGGTACCGGGT 79937820 295 TCATCTCACTAGGGAGTGCCAGACAGTGGGCGCAGGCCAGTGTGT 79937865 3 GTGCGCACCGTGCACGAGCCGAAGCAGGGCGAGGCATTGCCTCAC 79937910 436 CTGGGAAGCGCAAGGGGTCAGGGAGTTCCCTTTCCGAGTCAAAGA 79937955 6 AAGGGGTGACGGTCGCACCTGGAAAATCGGGTCACTCCCACCCGA 79938000 233 ATATTGCGCTTTTCAGACCGGCTTAAGAAACGGCGCACCACGAGA 79938045 138 CTATATCCCACACCTGGCTCGGAGGGTCCTACGCCCACGGAATCT 79938090 973 CGCTGATTGCTAGCACAGCAGTCTGAGATCAAACTGCAAGGCGGC 79938135 79938180 546 GGTAAACAAAGCAGCCGGGAAGCTCGAACTGGGTGGAGCCCACCA 79938225 2005 CAGCTCAAGGAGGCCTGCCTGCCTCTGTAGGCTCCACCTCTGGGG 79938270 2010 GCAGGGCACAGACAAACAAAAAGACAGCAGTAACCTCTGCAGACT 79938315 405 TAAGTGTCCCTGTCTGACAGCTTTGAAGAGAGCAGTGGTTCTCCC 79938360 7 AGCACGCAGCTGGAGATCTGAGAACGGGCAGACAGACTGCCTCCT 79938405 73 CAAGTGGGTCCCTGACTCCTGACCCCGAGCAGCCTAACTGGGAG 79938450 590 GCACCCCCAGCAGGGGCACACTGACACCTCACACGGCAGGGTAT 79938495 2051 TCCAACAGACCTGCAGCTGAGGGTCCTGTCTGTTAGAAGGAAAAC 79938540 295 TAACAACCAGAAAGGACATCTACACCGAAAACCCATCTGTACATC 79938585 2174 ACCATCATCAAAGACCAAAAGTAGATAAAACCACAAAGATGGGGA 79938630 501 AAAAACAGAACAGAAAAACTGGAAACTCTAAAACGCAGAGCGCCT 79938675 377 CTCCTCCTCCAAAGGAACGCAGTTCCTCACCAGCAACAGAACAAA 79938720 382 GCTGGATGGAGAATGATTTTGACGAGCTGAGAGAAGAAGGCTTCA 79938765 955 GACGATCAAATTACTCTGAGCTACGGGAGGACATTCAAACCAAAG 79938810 1453 GCAAAGAAGTTGAAAACTTTGAAAAAAATTTAGAAGAATGTATAA 79938855 2046 CTAGAATAACCAATACAGAGAAGTGCTTAAAGGAGCTGATGGAGC 79938900 1271 TGAAAACCAAGGCTCGAGAACTACGTGAAGAATGCAGAAGCCTCA 79938945 258 GGAGCCGATGCGATCAACTGGAAGAAAGGGTATCAGCGATGGAAG 79938990 1313 ATGAAATGAATGAAATGAAGCGAGAAGGGAAGTTTAGAGAAAAAA 79939035 1398 GAATAAAAAGAAATGAGCAAAGCCTCCAAGAAATATGGGACTATG 79939080 1315 TGAAAAGACCAAATCTACGTCTGATTGGTGTACCTGAAAGTGATG 79939125 371 TGGAGAATGGAACCAAGTTGGAAAACACTCTGCAGGATATTATCC

1155 AGGAGAACTTCCCCAATCTAGCAAGGCAGGCCAACGTTCAGATTC

79939170

log₂(repeats) +7.992e7 These repeated sequences appear to be clustered

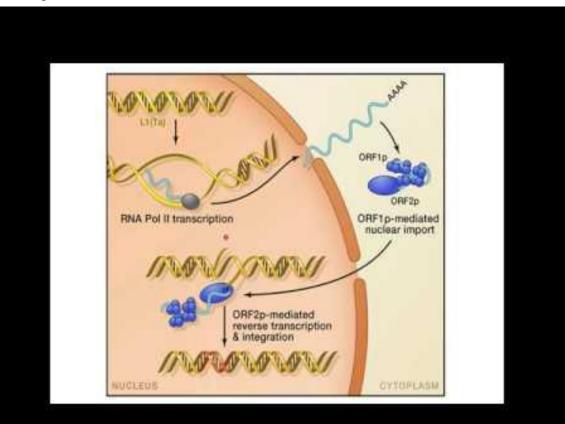
Repeated regions of our genome



Our genome is full of copies... either Tandem Repeats or Transposable Elements

About 45%

Cut-and-paste DNA transposons


Copy-and-paste Retrotransposons

From Koito and Ikeda, Frontiers in Microbiology, February 2013

TEs are everywhere

Let's find all copies of one of our repeats

chromo = [str(i) for i in xrange(1,23)] + ['X', 'Y', 'MT'] In [5]: target = "AGCACGCAGCTGGAGATCTGAGAACGGGCAGACAGACTGCCTCCT" # was 7 times revtar = revComp(target) for contig in chromo: with open("Chr%s.seq" % contig, 'r') as fp: seg = fp.read() start = 0 while True: i = seq.find(target, start) if (i > 0): print(contig, i, "+") start = i + 1else: break start = 0 while True: i = seq.find(revtar, start) if (i > 0): print(contig, i, "-") start = i + 1else: break 2 169249269 + 4 79938360 + 5 156067276 -8 72880901 -11 93137285 +11 93421619 + 16 33957922 -

1 TGAAAGTTTCACTGTAACATACTCACAGAAAGCTTTTTATCTGCA 79937460 1 AGTGACTTTTTGTGCCACTTGCTTGGGCCACTTTTTCCCAACTCT 79937505 1 AATTTGCAATTTGTATCTACCCTGAGAGAGGTACTGTCTATCAGG 79937550 1 GTATATAGTACCATACTCAAACAGATTTGTTCCGTTATCTAAACT 79937595 1 AGAAATAAATAAATCATAAAATGTTATGTGTCACTAACAAGGTAA 79937640 1 CAACTTGAATGCTTATGTATATATTGAGCATCAATTATGTACCCA 79937685 1 GCACTGTGATAGTGTTTTTAAAACCCCCCTAAGAGAGGAGCCAAGA 79937730 645 TGGCCGAATAGGAACAGCTCCGGTCTACAGCTCCCAGCGTGAGCG 79937775 108 ACGCAGAAGACGGTGATTTCTGCATTTCCATCTGAGGTACCGGGT 79937820 295 TCATCTCACTAGGGAGTGCCAGACAGTGGGCGCAGGCCAGTGTGT 79937865 3 GTGCGCACCGTGCACGAGCCGAAGCAGGGCGAGGCATTGCCTCAC 79937910 436 CTGGGAAGCGCAAGGGGTCAGGGAGTTCCCTTTCCGAGTCAAAGA 79937955 6 AAGGGGTGACGGTCGCACCTGGAAAATCGGGTCACTCCCACCCGA 79938000 233 ATATTGCGCTTTTCAGACCGGCTTAAGAAACGGCGCACCACGAGA 79938045 138 CTATATCCCACACCTGGCTCGGAGGGTCCTACGCCCACGGAATCT 79938090 973 CGCTGATTGCTAGCACAGCAGTCTGAGATCAAACTGCAAGGCGGC 79938135 79938180 546 GGTAAACAAAGCAGCCGGGAAGCTCGAACTGGGTGGAGCCCACCA 79938225 2005 CAGCTCAAGGAGGCCTGCCTGCCTCTGTAGGCTCCACCTCTGGGG 79938270 2010 GCAGGGCACAGACAAACAAAAAGACAGCAGTAACCTCTGCAGACT 79938315 405 TAAGTGTCCCTGTCTGACAGCTTTGAAGAGAGAGCAGTGGTTCTCCC 79938360 7 AGCACGCAGCTGGAGATCTGAGAACGGGCAGACAGACTGCCTCCT 79938405 73 CAAGTGGGTCCCTGACTCCTGACCCCGAGCAGCCTAACTGGGAG 79938450 590 GCACCCCCAGCAGGGGCACACTGACACCTCACACGGCAGGGTAT 79938495 2051 TCCAACAGACCTGCAGCTGAGGGTCCTGTCTGTTAGAAGGAAAAC 79938540 295 TAACAACCAGAAAGGACATCTACACCGAAAACCCATCTGTACATC 79938585 2174 ACCATCATCAAAGACCAAAAGTAGATAAAACCACAAAGATGGGGA 79938630 501 AAAAACAGAACAGAAAAACTGGAAACTCTAAAACGCAGAGCGCCT 79938675 377 CTCCTCCTCCAAAGGAACGCAGTTCCTCACCAGCAACAGAACAAA 79938720 382 GCTGGATGGAGAATGATTTTGACGAGCTGAGAGAAGAAGGCTTCA 79938765 955 GACGATCAAATTACTCTGAGCTACGGGAGGACATTCAAACCAAAG 79938810 1453 GCAAAGAAGTTGAAAACTTTGAAAAAAATTTAGAAGAATGTATAA 79938855 2046 CTAGAATAACCAATACAGAGAAGTGCTTAAAGGAGCTGATGGAGC 79938900 1271 TGAAAACCAAGGCTCGAGAACTACGTGAAGAATGCAGAAGCCTCA 79938945 258 GGAGCCGATGCGATCAACTGGAAGAAAGGGTATCAGCGATGGAAG 79938990 1313 ATGAAATGAATGAAATGAAGCGAGAAGGGAAGTTTAGAGAAAAAA 79939035 1398 GAATAAAAAGAAATGAGCAAAGCCTCCAAGAAATATGGGACTATG 1315 TGAAAAGACCAAATCTACGTCTGATTGGTGTACCTGAAAGTGATG 79939080 371 TGGAGAATGGAACCAAGTTGGAAAACACTCTGCAGGATATTATCC 79939125 79939170 1155 AGGAGAACTTCCCCAATCTAGCAAGGCAGGCCAACGTTCAGATTC

Chromosome 4 79937415

And look around where we found them

Here's one of the copies of "AGCACGCAGCTGGAGATCTGAGAACGGGCAGACAGACTGCCTCCT"

Not surprisingly, it is surrounded by repeated 45-mers that are similar to the ones on chromosome 4.

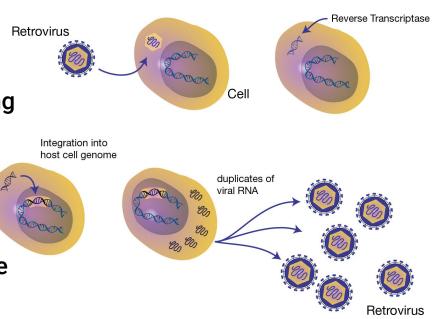
So, with what we now know let's go hunting for a particular type of Transposable Element.

One of Viral origin! Yes, our genomes have parasites.

Chromosome	11		
93136365	1	TTGCAGAGAAGTAGGAATGCTTTTACACTGTCGGTGGGAATGTAA	
93136410	1	ATTAGGTCAACTATTGTGGAAGACAGTGTGCAATTCCTCAAAGAT	
93136455	5	CTAGAACCAGAAATACGATTTGACCCAGCAATCCCATTACTGGGT	
93136500	1	AAATACCCAAAAGAATATAAATCATTCTATTATAGAGATACATGC	
93136545	1	ATGAGTATGTTCAGTGCAGCACACTTCACAATAGCAAAGACATGG	
93136590	1	AATCAACACAACTGCCCATCAATGATAGACTAAAGAAAACGTGGT	
93136635	1	ACATGGGGGGGGGGGGGGCCAAGATGGCCGAATAGGAACAGCTCCGGTC	
93136680	93	TACAGCTCCCAGCGTGAGCGACGCAGAAGACGGTGATTTCTGCAT	
93136725	1334	TTCCATCTGAGGTACCGGGTTCATCTCACTAGGGAGTGCCAGACA	
93136770	169	GTGGGCGCAGGCCAGTGTGTGTGCGCACCGTGCGCGAGCCGAAGC	
93136815	449	AGGGCGAGGCATTGCCTCACCTGGGAAGCGCAAGGGGTCAGGGAG	
93136860	3	TTCCCTTTCTGAGTCAAAGAAAGGGGTGACGGTCGCACCTGGAAA	
93136905	437	ATCGGGTCACTCCCACCCGAATATTGCGCTTTTCAGACCGGCTTA	
93136950	55	AGAAACGGCGCACCACGAGACTATATCCCACACCTGGCTCGGAGG	
93136995	393	GTCCTACGCCCACGGAATCTCGCTGATTGCTAGCACAGCAGTCTG	
93137040	270	AGATCAAACTGCAAGGCGGCAACGAGGCTGGGGGGGGGG	
93137085	581	CCATTGCCCAGGCTTGCTTAGGTAAACAAAGCAGCCGGGAAGCTC	
93137130	1565	GAACTGGGTGGAGCCCACCACAGCTCAAGGAGGCCTGCCT	
93137175	1908	TGTAGGCTCCACCTCTGGGGGGCAGGGCACAGACAAACAA	
93137220	406	AGCAGTAACCTCTGCAGACTTAAGTGTCCCTGTCTGACAGCTTTG	
93137265	1104	AAGAGAGCAGTGGTTCTCCCAGCACGCAGCTGGAGATCTGAGAAC	
93137310	8	GGGCAGACAGACTGCCTCCTCAAGTGGGTCCCTGACTCCTGACCC	
93137355	817	CCGAGCAGCCTAACTGGGAGGCACCCCCCAGCAGGGGCACACTGA	
93137400	81	CACCTCACATGGCAGGGTATTCCAACAGACCTGCAGCTGAGGGTC	
93137445	329	CTGTCTGTTAGAAGGAAAACTAACAACCAGAAAGGACATCTACAC	
93137490	526	CGAAAACCCATCTGTACATCACCATCATCAAAGACCAAAAGTAGA	
93137535	1308	TAAAACCACAAAGATGGGGAAAAAACAGAACAGAAAAAACTGGAAA	
93137580	446	CTCTAAAACGCAGAGCGCCTCTCCTCCTCCAAAGGAACGCAGTTC	
93137625	246	CTCACCAGCAACAGAACAAAGCTGGATGGAGAATGATTTTGACGA	
93137670	886	GCTGAGAGAAGAAGGCTTCAGACGATCAAATTACTCTGAGCTACG	
93137715	1553	GGAGGACATTCAAACCAAAGGCAAAGAAGTTGAAAACTTTGAAAA	
93137760	1512	AAATTTAGAAGAATGTATAACTAGAATAACCAATACAGAGAAGTG	
93137805	1272	CTTAAAGGAGCTGATGGAGCTGAAAAACCAAGGCTCGAGAACTACG	
93137850	1265	TGAAGAATGCAGAAGCCTCAGGAGCCGATGCGATCAACTGGAAGA	
93137895	775	AAGGGTATCAGCAATGGAAGATGAAATGAATGAAATGAA	
93137940	1267	AGGGAAGTTTAGAGAAAAAAAGAATAAAAAGAAATGAGCAAAGCCT	
93137985	115	CCAAGAAATATGGGACTATGTGAAAAGACCAAATCTACGTCTGAC	
93138030	367	TGGTGTACCTGAAAGTGATGTGGAGAATGGAACCAAGTTGGAAAA	
93138075	2615	CACTCTGCAGGATATTATCCAGGAGAACTTCCCCAATCTAGCAAG	~
93138120	955	GCAGGCCAACGTTCAGATTCAGGAAATACAGAGAACGCCACAAAG	2

Chromosome 11

21

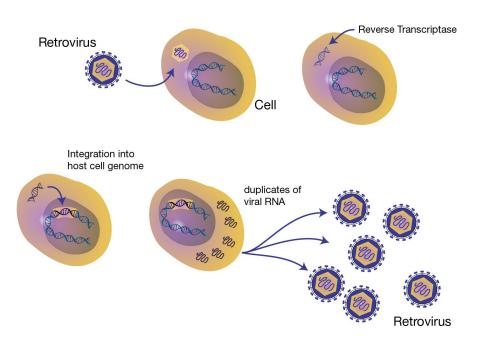

One class of TEs: Endogenous Retroviruses (ERV)

One class of Transposable Element has its origin as a virus. In particular, a Retrovirus.

Retroviruses replicate by incorporating themselves into an organism's DNA using a process called Retrotransposon.

Then they use RNA transcription machinery to make more copies of themselves.

Our immune system works to silence the expression of these ERVs. But occasionally, they reawaken.

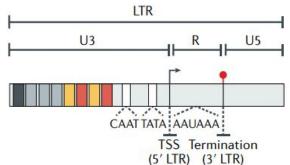


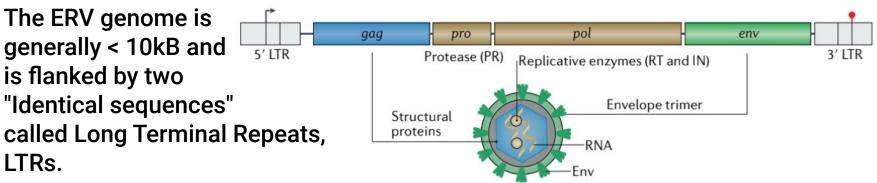
23

One class of TEs: Endogenous Retroviruses (ERV)

Eventually many copies of ERVs are spread throughout the genome. ERVs are common throughout all vertebrate genomes.

The evolution of an organism is both influenced and traceable from the shared ERVs in common ancestors.

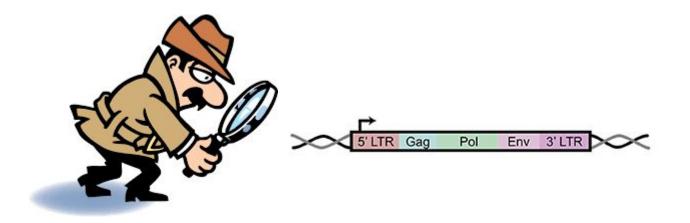

Comp 555 - Spring 2022


ERV genome structure

generally < 10kB and 5' LTR is flanked by two "Identical sequences" LTRs.

These LTRs contain the transcription start and end sites that are used when the ERV is copied (retrotransposed). These are LTR parentheses enclosing the "proviral" sequence. U3

LTRs are required for the ERV to activate.



We will develop a strategy to find these LTR-like sequences in a genome.

