Comp 555 - BioAlgorithms - Spring 2022

Finding Patterns in DNA

Login to Course Website

1) Login to your Comp555 account

2) Your username is your UNC ONYEN and password is your PID

Username: guest
Password:
Login

Next Steps

3) Once you are logged in, press "Course" and then a "Setup" button should appear. Press "Setup" and you should see something like:

Comp555S22 Problem Sets and Exams:

Comp555S22 Exercises:

Exercises:
leehart has submitted 1 of 1 exercises
Exercise01:
https:///forms.gle/RRzwduitpbcuHzHA

4) (BTW, you can also change your password here if you want).

For those without a login...

- Go back to the login page, and click "registered"

No password is required to logon as "guest"
You must be registered to have full access or modify content.

- Then enter the following information:
- Once registered a screen will indicate you've been verified; then click "Course" and "Setup" as before.
- Don't repeat this again, for example if you forget your password

You've seen a small genome... now let's scale up

In [4]: import gzip

In [5]: def loadFasta(filename)
""" Parses a classically formatted and possibly
compressed FASTA file into a list of headers
and fragment sequences for each sequence contained""
if (filename.endswith(".gz")):
$f p=$ gzip.open(filename, 'r')
else:
$\mathrm{fp}=$ open(filename, 'r')
\# split at headers
data $=f p . r e a d() . s p l i t('>')$
fp.close()
\# ignore whatever appears before the 1st header
data.pop(0)
headers = []
sequences $=$ []
for sequence in data:
lines = sequence.split('\n')
headers.append(lines.pop(0))
\# add an extra "+" to make string "1-referenced"
sequences.append('+' + ''.join(lines))
return (headers, sequences)
In [*]: header, seq = loadFasta("data/GCA_000001405.15_GRCh38_genomic.fna.gz") $\begin{aligned} & \text { print(len(header), "sequences") }\end{aligned}$
of the human genome.
But, we're only going to look at part of it.

What's inside

Human DNA

- Is distributed across 23 primary chromosomes named 1-22, an X.
- We actually have two copies of of the numbered chromosomes, and two copies of X if you are female or one X and one Y if you are male.
- There is also a short DNA sequence that appears in a cell organelles called mitochondria.
- There are also 430 other "unmapped" sequences

455 sequences
 CM000664.2 Homo sapiens chromosome 2, GRCh38 reference primary assembly 242193529 bases +NNNNNNNNNNNNNNNNNNNNNNNNNNNWN ... NNNNNNNNNNNNNNNNNNNNWNNNWNNNNN CMeoo665.2 Homo sapiens chromosome 3, GRCh38 reference primary assembly
198295559 bases +NNNNNNNNNNNNNNNNNNNNNNNNNN ... NNNNNNNNNNNNNNNNNNNNNNNNNNN CMeoob66.2 Homo sapiens chromosome 4, GRCh38 reference primary assembly CM000666.2 Homo sapiens chromosome 4, GRCh38 reference primary assembly
190214555 bases +NWNNNNNNNNNNNNNNNNNNNNNNNN ... NNNNNNNNNNNNNNNNNNNNNNNNNNN CM@மO667.2 Homo sapiens chromosome 5, GRCh38 reference primary assembly 181538259 bases +NNNNNNNNNNNNNNNNNNNNNNNNNNNNN \ldots. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN CMeoe668.2 Homo sapiens chromosome 6, GRCh38 reference primary assembly
170805979 bases + NNWNNNNNNNNNNNNNNNNNNNNNNN ... NNNNNNNNNNNNNNNNNNNNNNNNNNN 170805979 bases +NNNNNNNNNNNNNNNNNNNNNNNNNNNNN ... NNNNNNNNNNNNNNNNNNNNNNNWNNNNNN
CMeoo669.2 Homo sapiens chromosome 7, GRCh38 reference primary assembly CM900669.2 Homo sapiens chromosome 7, GRCh38 reference primary assembly
159345973 bases +NNNNNNNNNNNNNNNNNNNNNNNNNN ... NNNNNNNNNNNNNNNNNNNNNNNNNNN CMeoo670.2 Homo sapiens chromosome 8, GRCh38 reference primary assembly 145138636 bases +NNWNNNNNNNNNNNNNNNNNNNNNNNWNN ... NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN CMQ00671.2 Homo sapiens chromosome 9, GRCh38 reference primary assembly 138394717 bases +NNNNNNNNNNNNNNNNNNNNNNNNNNNNN ... NNNNNNNNNNNNNNNNNNNNNNNNNNNNNI CM000672.2 Homo sapiens chromosome 10, GRCh38 reference primary assembly CMeoo673.2 Homo sapiens chromosome 11, GRCh38 reference primary assembly CM900673.2 Homo sapiens chromosome 11 , GRCh38 reference primary assembly
135086622 bases +NNWNNNNNNNNNNNNNNNNNNNNNNN ... NNNNNNNNNNNNNNNNNNNNNNNNNNN CMQOO674.2 Homo sapiens chromosome 12, GRCh38 reference primary assembly
133275309 bases +NNNNNNNNNNNNNNNNNNNNNNNNNN ... NNNNNNNNNNNNNNNNNNNNNNNNNNN 133275309 bases +NNNNNNNNNNNNNNNNNNNNNNNNNNNNN ... NNNNNNNNNNNNNNNNNNNNN CM000675.2 Homo sapiens chromosome 13, GRCh38 reference primary assembly
 107043718 bases +19006iens chromosome 14, GRCh38 reference primary assembly CMQOO677.2 Homo sapiens chromosome 15 , GRCh38 reference primary assembly
101991189 bases + NNWNNNNNNNNNNNNNNNNNNNNNWNN ... NNNWNNNNNNNNNNNNNNNNNNNNNNN CMQe00678.2 Homo sapiens chromosome 16, GRCh38 90338345 base primary assembly CM000679.2 Homo sapiens chromosome 17, GRCh38 reference primary assembly CM900079.2 Homo sapiens chromosome 17 , GRCh38 reference primary assembly
83257441 bases +NNNNNNNNNNNNNNNNNNNNNNNNNN \ldots NNNNNNNNNNNNNNNNNNNNNNNNNN CMOeO680.2 Homo sapiens chromosome 18, GRCC38 reference primary assembly 80373285 bases +NNNNNNNNNNNNNNNNNNNNNNNNNNNNN ... NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN CMeoo681.2 Homo sapiens chromosome 19, GRCh38 reference primary assembly
58617616 bases +NNNNNNNNNNNNNNNNNNNNNNNNNN ... NNNNNNNNNNNNNNNNNNNNNNNNNN
 CMOө0682.2 Homo sapiens chromosome 20, GRCh38 reference primary assembly
64444167 bases +NNNNNNNNNNNNNNNNNNNNNNNNNN ... NNNNNNNNNNNNNNNNNNNNNNNNNNN CMP00683.2 Homo sapiens chromosome 21, GRCh38 reference primary assembly 46709983 bases +NNNNNNNNNNNNNNNNNNNNNNNNNNNNN \ldots NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN CMOOO684.2 Homo sapiens chromosome 22, GRCh38 reference primary assembly
 CMOOO685.2 Homo sapiens chromosome X, GRCh38 reference primary assembly 156040895 bases +NNWNNNNNNNNNNNNNNNNNNNNNNNNNN ... NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
 J01415.2 Homo sapiens mitochondrion, complete genome 16569 bases +GATCACAGGTCTATCACCCTATTAACCAC ... CACGTTCCCCTTAAATAAGACATCACGATG

Missing Puzzle Pieces

There are still missing, partially assembled, pieces, that we don't yet know where they are placed.

What it's sequence looks like

As with SARS-CoV-2, we can get some insights into a genome by examining its k-mer distributions. But before we start, let's look consider the genome's size?

- In total, there are $3,272,116,950$ base pairs in the primary (forward) sequence
- Many of these are unknown, and are indicated by ' N '
- There are also a small number of ambiguous bases indicated using a standard called UIPAC

Let's reformat our sequences

It's a little annoying to load a series of sequences from FASTA files over and over again. Especially when we will mostly deal with a subset, and of those we will consider them one at a time.

So I decided to write out each sequence as a single string to its own file.

```
In [ ]: header, seq = loadFasta("data/GCA_000001405.15_GRCh38_genomic.fna.gz")
    print(len(header), "sequences")
    for i in range(len(header)):
        if header[i].startswith("CM") or header[i].startswith("J0"):
            start = header[i].find('chromosome ')
            chromo = header[i][start+11:header[i].find(',')] if (start >= 0) else "MT"
            with open("data/Chr%s.seq" % chromo, 'w') as fp:
                fp.write(seq[i])
```

You might want to wait and do this later.

A quick helpful function

- DNA is actually two sequences, a primary and reverse-complement version
- Genomes report only one (the primary one), and the reverse complement version can be derived from it.
- When we consider k-mers, in most cases, we don't care which of the sequences they come from

We didn't consider the
reverse complement sequence of our viral genome because it was an RNA genome.

In []: def revComp(dnaSeq)
return ''.join([\{'A': 'T', 'C':'G', 'G': 'C', 'T': 'A'\}[base] for base in reversed(dnaSeq)])

- Here's an example:

```
In [4]: print(revComp("GAGACAT"))
print(revComp("ATGTCTC"))
```

ATGTCTC
GAGACAT

Let's consider some k-mer statistics

For what value of k ?

DON'T RUN IT!

, 242193529, 4175438, 1364.77 secs
'3', 198295559, 4184312, '1064.28 secs'
4', 190214555, 4188228, ' 1155.32 secs
181538259, 4190446, '1031.80 secs
'6', 170805979, 4191700, '930.77 secs
1025.24 secs
'9', 138394717, 4193190, '751.69 secs
'10', 133797422, 4193464, '827.02 secs'
'11', 135086622, 4193648, '780.05 secs
'12', 133275309, 4193788, '724.03 secs
114364328, 4193862, 635.01 secs
'15' 101901189' 4103988' '530. 65 secs
'16', 90338345, 4194048, '478.42 secs
'17', 83257441, 4194088, '447.81 secs
18', 80373285, 4194110, '448.31 secs
'19', 58617616, 4194136, '345.26 secs
20', 64444167, 4194158, '363.14 secs
46709983, 4194166, 251.95 secs
22', 50818468, 4194182, '253.91 secs
X', 156040895, 4194200, ' 866.71 secs
MT', 16569, 4194200, ' 0.10 secs'
3088286401, 4194200

- It takes a while to run (there are actually faster ways to do this!)
- 1000 secs is around 16 minutes
- And we still don't see every possible 11-mer

What does the distribution look like?

In [14]: import matplotlib
import matplotlib.pyplot as plot
\%matplotlib inline
\# Compute a histogram of kmerCount (i.e. how many kmers appear 1 time, 2 times, 3 times ...) maxcount $=1000$
hist = [0 for i in range(maxcount)]
for kmer in kmerCount:
count $=$ kmerCount [kmer]
if (count < maxcount):
hist[count] $+=1$
fig = plot.figure(figsize=(16,4$)$)
plot.plot([i for i in range(maxcount)], hist) plot.show()

It looks like the sum of at least two binomial distributions.

One with a mode around 20 and a second with a mode near 125

What could we learn from other values of k

- Our genome includes every possible 11-mer
- How large should k be so that we'd expect most k-mers to be unique?
- Recall the genome has $3,272,116,950$ bases

There are 4,194,304 11-mers
There are 67,108,864 13-mers
There are 1,073,741,824 15-mers
There are 17,179,869,184 17-mers
There are $274,877,906,944$ 19-mers
There are 4,398,046,511,104 21-mers
There are 70,368,744,177,664 23-mers
There are 1,125,899,906,842,624 25-mers
There are 18,014,398,509,481,984 27-mers
There are $288,230,376,151,711,74429$-mers
There are $4,611,686,018,427,387,904$ 31-mers
There are $73,786,976,294,838,206,46433$-mers

There are $1,180,591,620,717,411,303,42435$-mers
There are $18,889,465,931,478,580,854,78437-m e r s$
There are $302,231,454,903,657,293,676,54439-m e r s$
There are $4,835,703,278,458,516,698,824,70441$-mers
There are $77,371,252,455,336,267,181,195,264$ 43-mers There are 1,237,940,039,285,380,274,899,124,224 45-mers

The genome is much smaller than this, thus, repeats are unlikely by chance

While I was bored last night...

I broke the human genome into non-overlapping 45-mers, and counted how many times each appears in the genome...

GGGCCGAATAGGAACAGCTCCGGTCTACAGCTCCCAGCGTGAGCG|ACGCAGAAGACGGTGATTTCTGCATTTCCATCTGAGGTACCGGGT|TCATCTCACTAGGGAGTGCCAGACAGTGGGCGCAGGCCAGTGTGT|GTGCGCACCGTGCACGAGCCGAAGCAGGGCGAGGCATTGCCTCAC

[^0]
Most places look like this.

Chromosome 4

79935885
79935930 79935975 79936020 79936065 79936110 79936155 79936200 79936245 79936245 79936290 79936335 79936380 79936425 79936470 79936515 79936560 79936605 79936650 79936695 79936740 79936785 79936830 79936875 79936920 79936965 79937010 79937055 79937100 79937145 79937145 7993719 79937235 79937280 79937325 79937370 79937415 79937460 79937505 7993755 79937595 79937640

TCCAGCTGTTGCATAGCTTTGTTAAAGAGTGACACTTAGGCTAA GTACTCTAAGGAAATGACTCCGCTCCCAGTGGAATCTCTCTTCTG AAACAATAAATGCCTGTTCCAACAAAAGAGCACCTTAAACTATGA TTCCATTCCAAAGTTGTAAAAAAAATGGAATTAATTAGGATTTAGC AAGTGTACAACCTCTAGCCAGGAGTCATATATTCTAATTTTGAGA tattattcatagttctcanagcagagagttactacacattattt tactatcagtacaataccactttttaaaagGgttcagatgittta ATCACTATTACACAAGTACTACAAATGATATAATTAGTTGCATTC TTATTTGCAGAATATTTAATTGATCTCTATTCAGATAAATTTTTA TTATTTGCAGAATATTTAATTGATCTCTATTCAGATAAATTTTTA aTCAGAGCTTAGCTACTCTCTTTCABAACCATTACTATTCTCCTT a CACAACCTAGCTATGCAAGTTTTCTCCTTCATCTCACAACCAAA CCTAAATGACAATCAAA CATTCTCACATTTTTCTAATTCTCCA CCAGTTTCCTTTTCTTTCAAGGTAATTTATGTCCTCATAAAGGCT a月aGITTCCTTTCTTTCAAGGTAATTTATGTCCTCATAAAAGCT TAGGTATAATTCCTGATGGGAGAAATTAGTGAAATATTTCAACAG TATTCAAGTTGGTCTCAGGGACTGGGAAATAATGCAAAAGAAATA AAAAAAATCCTTTATTAAACGTAAAAGGGAAGAAGAAAAGACTAA CACATGAAATAATTAGAAAACAATTAATTTAAAAATTACTGCACA ATATTTAAACTAATTCACTTTAAGTTCTGATTATTAATTGCACTA TGGGTTATAATCACCTTTTTTGTGCTTATAATCATTCCCACCTAG TACAATGGTACTACACTAGTAGTACCACACTAAAGGTACTACACT CTACCACTGTACTAACCAATGGTAAAAACTACACTTATATTTTCT ATTITTTICTATCACTTGTATAATGCTAGGCAGAAAGTCAGCAAG CAATGGATAATTGATTATGTATTCATTCAATCATTTTAAAGCATT 1 TTTCATTTTAATCTTTGTTGCAAAGAAGAAAAATGTATTAATAAT 1 TTTTACTTTTAATAAATACATTAGCATTAACTTTATACAGTTTTA AAACACTCATAAACTTAATTAAGCTTTTAATTCAGTTATAAATAG GACTCATTCACTGTATTCTCAACAGTAGCATTAAAAAAACCAGGT GCCTATTTCATATTCTTAATGAAGCAATTGCTAGCAATAGGAAAA CCTCAAAAGATTCACATTTGGCTCAACTAAGTTCCTTGAAATTA CTCAAAMGA CACATTA GAGCACA MATTGAGCAGAAGAA A MAATTTTGGAGAATHTTGTAATATCCATAAATGTTTAGGC aАAant tagaagticactgtaacatactcacagaagctitttatctac TGAAAGTTTCACTGTAACATACTCACAGAAAGCTTTTTATCTGCA 1 AGTGACTTTTTGTGCCACTTGCTTGGGCCACTTTTTCCCAACTCT 1 AATTTGCAATTTGTATCTACCCTGAGAGAGGTACTGTCTATCAGG 1 GTATATAGTACCATACTCAAACAGATTTGTTCCGTTATCTAAACT 1 AGAAATAAATAAATCATAAAATGTTATGTGTCACTAACAAGGTAA 1 CAACTTGAATGCTTATGTATATATTGAGCATCAATTATGTACCCA

> As you'd expect, most 45-mers are unique.

> But, occasionally, we run into a series that are repeated all over the genome.

And, they aren't trivial repetitive sequences.

1 TGAAAGTTTCACTGTAACATACTCACAGAAAGCTTTTTATCTGCA 1 AGTGACTTTTTGTGCCACTTGCTTGGGCCACTTTTTCCCAACTCT 1 AATTTGCAATTTGTATCTACCCTGAGAGAGGTACTGTCTATCAGG 1 GTATATAGTACCATACTCAAACAGATTTGTTCCGTTATCTAAACT 1 AGAAATAAATAAATCATAAAATGTTATGTGTCACTAACAAGGTAA I CAACTTGAATGCTTATGTATATATTGAGCATCAATTATGTACCCA 1 GCACTGTGATAGTGTTTTTAAAACCCCCTAAGAGAGGAGCCAAGA 645 TGGCCGAATAGGAACAGCTCCGGTCTACAGCTCCCAGCGTGAGCG 108 ACGCAGAAGACGGTGATTTCTGCATTTCCATCTGAGGTACCGGGT 295 TCATCTCACTAGGGAGTGCCAGACAGTGGGCGCAGGCCAGTGTGT 3 GTGCGCACCGTGCACGAGCCGAAGCAGGGCGAGGCATTGCCTCAC 436 CTGGGAAGCGCAAGGGGTCAGGGAGTTCCCTTTCCGAGTCAAAGA 6 AAGGGGTGACGGTCGCACCTGGAAAATCGGGTCACTCCCACCCGA 33 ATATTGCGCTTTTCAGACCGGCTTAAGAAACGGCGCACCACGAGA 38 CTATATCCCACACCTGGCTCGGAGGGTCCTACGCCCACGGAATCT 73 GGCTGATTGCTAGCACAGCAGTCTGAGATCAAACTGCAAGGCGGC 70 AACGAGGCTGGGGGAGGGGCGCCCGCCATTGCCCAGGCTTGCTTA 546 GGTAA CAAAGCAGCCGGCGCCCCATHCCGGGGAGCCCACCA 305 GAGCTCAAGGAGGCTGCCTGCCTCTGTAGCTCCACCTCTGGG 010 CAGCMGGGGCCTGCC GCCTVGOGGCTCCACCTCTGGGG 010 GCAGGGCACAGACAAACAAAAAGACAGCAGTAACCTCTGCAGACT

5 TAAGTGTCCCTGTCTGACAGCTTTGAAGAGAGCAGTGGTTCTCCC
AGCACGCAGCTGGAGATCTGAGAACGGGCAGACAGACTGCCTCCT 73 CAAGTGGGTCCCTGACTCCTGACCCCCGAGCAGCCTAACTGGGAG 590 GCACCCCCCAGCAGGGGCACACTGACACCTCACACGGCAGGGTAT 2051 TCCAACAGACCTGCAGCTGAGGGTCCTGTCTGTTAGAAGGAAAAC 295 TAACAACCAGAAAGGACATCTACACCGAAAACCCATCTGTACATC 2174 ACCATCATCAAAGACCAAAAGTAGATAAAACCACAAAGATGGGGA 501 AAAAACAGAACAGAAAAACTGGAAACTCTAAAACGCAGAGCGCCT 377 CTCCTCCTCCAAAGGAACGCAGTTCCTCACCAGCAACAGAACAAA 382 GCTGGATGGAGAATGATTTTGACGAGCTGAGAGAAGAAGGCTTCA 553 GCAAAGAAGTTGAACTTTTACGGAGICAGAAGATGTATAA 2046 CTAGAATAACCAATACAGAGAAGTGCTTAAAGGAGCTGATGGAGC 1271 TGAAAACCAAGGCTCGAGAACTACGTGAAGAATGCAGAGCCTCA 258 GGAGCCGATGCGATCAACTGGAGGAAGGGTATCAGCGATGGAA
 1398 GAATAAAAAGAATGAGCAAAGCCTCCAAGAAATATGGGCTATG 1315 TGAAAAGACCAAATCTACGTCTGATTGGTGTACCTGAAAGTGATG 371 TGGAGAATGGAACCAAGTTGGAAAACACTCTGCAGGATATTATCC 1155 AGGAGAACTTCCCCAATCTAGCAAGGCAGGCCAACGTTCAGATTC

Zooming out

Repeated regions of our genome

Our genome is full of copies... either Tandem Repeats or Transposable Elements

TEs are everywhere

Let's find all copies of one of our repeats

Chromosome
In [5]: chromo $=[\operatorname{str}(\mathrm{i})$ for i in xrange(1,23)] + ['X', 'Y', 'MT']
target $=$ "AGCACGCAGCTGGAGATCTGAGAACGGGCAGACAGACTGCCTCCT" \# was 7 times revtar $=$ revComp(target)
for contig in chromo:
with open("Chr\%s.seq" \% contig, "r') as fp:
seq $=$ fp.read()
start $=0$
while True:
$i=s e q . f i n d($ target, start)
if (i>0):
print(contig, i, "+")
start $=1+1$
else:
break
start $=0$
while True:
$i=s e q . f i n d(r e v t a r$, start)
if ($i>0$) : print(contig, i, "-") start = i + 1
else:
break
$2169249269+$
$479938360+$
5156067276
872880901 -
$1193137285+$
$1193421619+$
1633957922 -

TGAAAGTTTCACTGTAACATACTCACAGAAAGCTTTTTATCTGCA

 1 AGTGACTTTTTGTGCCACTTGCTTGGGCCACTTTTTCCCAACTCT 1 AATTTGCAATTTGTATCTACCCTGAGAGAGGTACTGTCTATCAGG 1 GTATATAGTACCATACTCAAACAGATTTGTTCCGTTATCTAAACT 1 AGAAATAAATAAATCATAAAATGTTATGTGTCACTAACAAGGTAA 1 CAACTTGAATGCTTATGTATATATTGAGCATCAATTATGTACCCA 1 GCACTGTGATAGTGTTTTTAAAACCCCCTAAGAGAGGAGCCAAGA TGGCCGAATAGGAACAGCTCCGGTCTACAGCTCCCAGCGTGAGCG 108 ACGCAGAAGACGGTGATTTCTGCATTTCCATCTGAGGTACCGGGT 295 TCATCTCACTAGGGAGTGCCAGACAGTGGGCGCAGGCCAGTGTGT 3 GTGCGCACCGTGCACGAGCCGAAGCAGGGCGAGGCATTGCCTCAC 436 CTGGGAAGCGCAAGGGGTCAGGGAGTTCCCTTTCCGAGTCAAAGA 6 AAGGGGTGACGGTCGCACCTGGAAAATCGGGTCACTCCCACCCGA 233 ATATTGCGCTTTTCAGACCGGCTTAAGAAACGGCGCACCACGAGA 38 CTATATCCCACACCTGGCTCGGAGGGTCCTACGCCCACGGATCT 73 CGCTGATTGCTAGCACAGCAGTCTGAGATCAAACTGCAAGGCGGC 70 AACGAGGCTGGGGGAGGGGCGCCCGCCATTGCCCAGGCTTGCTTA 56 GGTAAACAAAGCAGCCGGGAGCTCGAACTGGGTGGAGCCCACCA 505 CAGCTCAAGGAGCCTGCCTGCCTCTGTAGGCTCCACCTCTGGG 010 CACTAAGAGGCCTGCC 405 TAAGTGTCCCTGTCTGACAGCTTTGAAGAGAGCAGTGGTTCTCCC 7 AGCACGCAGCTGGAGATCTGAGAACGGGCAGACAGACTGCCTCCT 993845 1453 GCAAAGAAGTTGAAAACTTTGAAAAAAATTTAGAAGAATGTATAA 2046 CTAGAATAACCAATACAGAGAAGTGCTTAAAGGAGCTGATGGAGC 1271 TGAMAACCAGGCTCGAGAACTACGTGAAGAATGCAGAAGCCTCA 258 GGAGCCGATGCGATCAACTGGAAGMAGGGTATCAGCGATGGA 1313 ATGAATGCGA CAAC GGAAGAAGGGTATCAGCGATGGAAG 1398 A ATA GAG 371 TGGAGAATGGAACCAAGTTGGAAAACACTCTGCAGGATATTATCC 7993917 1155 AGGGAATGGAACCAAGITGGAAAACACTCTGCAGGATATTATCC 1155 AGGAGAACTTCCCCAATCTAGCAAGGCAGGCCAACGTTCAGATTC
And look around where we found them

Chromosome 11

1 TTGCAGAGAAGTAGGAATGCTTTTACACTGTCGGTGGGAATGTAA 1 ATTAGGTCAACTATTGTGGAAGACAGTGTGCAATTCCTCAAAGAT 5 CTAGAACCAGAAATACGATTTGACCCAGCAATCCCATTACTGGGT 1 AAATACCCAAAAGAATATAAATCATTCTATTATAGAGATACATGC 1 ATGAGTATGTTCAGTGCAGCACACTTCACAATAGCAAAGACATGG 1 AATCAACACAACTGCCCATCAATGATAGACTAAAGAAAACGTGGT
1 ACATGGGGGAGGAGCCAAGATGGCCGAATAGGAACAGCTCCGGTC 93 TACAGCTCCCAGCGTGAGCGACGCAGAAGACGGTGATTTCTGCAT 1334 TTCCATCTGAGGTACCGGGTTCATCTCACTAGGGAGTGCCAGACA 169 GTGGGCGCAGGCCAGTGTGTGTGCGCACCGTGCGCGAGCCGAAGC 449 AGGGCGAGGCATTGCCTCACCTGGGAAGCGCAAGGGGTCAGGGAG 3 TTCCCTTTCTGAGTCAAAGAAAGGGGTGACGGTCGCACCTGGAAA 437 ATCGGGTCACTCCCACCCGAATATTGCGCTTTTCAGACCGGCTT 55 AGAAACGGCGCACCACGAGACTATATCCCACACCTGGCTCGGAGG 393 GTCCTACGCCCACGGAATCTCGCTGATTGCTAGCACAGCAGTCTG 270 AGATCAAACTGCAAGGCGGCAACGAGGCTGGGGGAGGGGGCGCCCG 581 CCATTGCCCAGGCTTGCTTAGGTAAACAAAGCAGCCGGGAAGCTC 1565 GAACTGGGTGGAGCCCACCACAGCTCAAGGAGGCCTGCCTGCCTC 1908 TGTAGGCTCCACCTCTGGGGGCAGGGCACAGACAAACAAAAAGAC 406 AGCAGTAACCTCTGCAGACTTAAGTGTCCCTGTCTGACAGCTTTG 104 AAGAGAGCAGTGGTTCTCCC_AGCACGCAGCTGGAGATCTGAGAAC 8 GGGCAGACAGACTGCCTCCTHAAGTGGGTCCCTGACTCCTGACCC 817 CCGAGCAGCCTAACTGGGAGGCACCCCCCAGCAGGGGCACACTG 81 CACCTCACATGGCAGGGTATTCCAACAGACCTGCAGCTGAGGGTC 329 CTGTCTGTTAGAAGGAAAACTAACAACCAGAAAGGACATCTACAC 526 CGAAAACCCATCTGTACATCACCATCATCAAAGACCAAAAGTAGA 308 TAAAACCACAAAGATGGGGAAAAAACAGAACAGAAAAACTGGAAA 446 CTCTAAAACGCAGAGCGCCTCTCCTCCTCCAAAGGAACGCAGTT 246 CTCACCAGCAACAGAACAAAGCTGGATGGAGAATGATTTTGACGA 886 GCTGAGAGAAGAAGGCTTCAGACGATCAAATTACTCTGAGCTAC 553 GGAGGACATTCAAACCAAAGGCAAAGAAGTTGAAAACTTTGAAAA 12 AAATTTAGAAGAATGTATAACTAGAATAACCAATACAGAGAAGT 265 CTTAAAGGAGCTGATGGAGCTGAAAACCAAGGCTCGAGAACTAC 265 TGAAGAATGCAGAAGCCTCAGGAGCCGATGCGATCAACTGGAAGA 775 AAGGGTATCAGCAATGGAAGATGAAATGAATGAAATGAAGCGAG 115 CCAAGAAATATGGGACTATGTGAAAAGACCAAATCTACGTCTGAC 367 TGGTGTACCTGAAAGTGATGTGGAGAATGGAACCAAGTTGGAAA 2615 CACTCTGCAGGATATTATCCAGGAGAACTTCCCCAATCTAGCAAG 955 GCAGGCCAACGTTCAGATTCAGGAAATACAGAGAACGCCACAAAG

One class of TEs: Endogenous Retroviruses (ERV)

One class of Transposable Element has its origin as a virus. In particular, a Retrovirus.

Retroviruses replicate by incorporating themselves into an organism's DNA using a process called Retrotransposon.
Then they use RNA transcription machinery to make more copies of themselves.

Our immune system works to silence the expression of these ERVs. But

Integration into host cell genome
 occasionally, they reawaken.

One class of TEs: Endogenous Retroviruses (ERV)

Eventually many copies of ERVs are spread throughout the genome. ERVs are common throughout all vertebrate genomes.

The evolution of an organism is both influenced and traceable from the shared ERVs in common ancestors.

Integration into host cell genome

ERV genome structure

The ERV genome is generally < 10kB and

These LTRs contain the transcription start and end sites that are used when the ERV is copied (retrotransposed). These are parentheses enclosing the "proviral" sequence.

LTRs are required for the ERV to activate.

Next Time

We will develop a strategy to find these LTR-like sequences in a genome.

[^0]: CTGGGAAGCGCAAGGGGTCAGGGAGTTCCCTTTCCGAGTCAAAGA|AAGGGGTGACGGTCGCACCTGGAAAATCGGGTCACTCCCACCCGA|ATATTGCGCTTTTCAGACCGGCTTAAGAAACGGCGCACCACGAGA|CTATATCCCACACCTGGCTCGGAGGGTCCTACGCCCACGGAATCT

