Comp 555 - BioAlgorithms - Spring 2022

www.csbio.unc.edu/mcmillan/index.py?run=Courses.Comp555S22
Jumping into Genomes

A simple genome

We'll first consider a Viral genome.

Hepatitis B

Ebola Virus

Adenovirus

Influenza

Bacteriophage

Characteristics of Viral genomes:

- Small, dense, and tricky
- Viral genomes code for functional proteins in order to "live", but rely on a host's machinery to perform essential functions
- Small genomes (3K-30K bases) with a few "key" genes

Today's Virus

SARS-CoV-2, the virus that causes COVID-19

- 29903 bases of the original Wuhan isolate
- 10 (11?) genes, 4 structural, 2 with primary functions

How viral life works

Time to get serious

- By next Tuesday's class meeting everyone should set up a Jupyter Notebook environment
- Recommend using Anaconda

https://www.anaconda.com/products/individual

- Includes an isolated environment, an IDE, common packages, and a package manager
- Will need it for problem sets and exams
- Next Wednesday's office hours will focus on helping folks install Jupyter
- C0MP555 accounts should be up by next Tuesday
- We'll start using Python and Jupyter today.
- You should go back through today's Notebook to verify your setup

Let's look at a Viral sequence

FASTA is a common format for biological sequences

- Each sequence is preceded by a header line that starts with '>'
- Followed by multiple lines of sequence data from a standard alphabet
- For DNA, alphabet = "ACGT"
- For RNA, alphabet = "ACGU"
- For Proteins, alphabet = "ACDEFGHIKLMNOPQRSTUVWY"
- A sequence ends when either another header line is reached or the end-of-file
- Multiple sequences per file are allowed
- Sequences are 1 -indexed rather than 0 -indexed!

An Example

In [5]: !head data/SARS-COV-2Wuhan.fasta
>NC_045512.2 |Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, complete genome ATTAAAGGTTTATACCTTCCCAGGTAACAAACCAACCAACTTTCGATCTCTTGTAGATCT GTTCTCTAAACGAACTTTAAAATCTGTGTGGCTGTCACTCGGCTGCATGCTTAGTGCACT CACGCAGTATAATTAATAACTAATTACTGTCGTTGACAGGACACGAGTAACTCGTCTATC TTCTGCAGGCTGCTTACGGTTTCGTCCGTGTTGCAGCCGATCATCAGCACATCTAGGTTT CGTCCGGGTGTGACCGAAAGGTAAGATGGAGAGCCTTGTCCCTGGTTTCAACGAGAAAAC ACACGTCCAACTCAGTTTGCCTGTTTTACAGGTTCGCGACGTGCTCGTACGTGGCTTTGG AGACTCCGTGGAGGAGGTCTTATCAGAGGCACGTCAACATCTTAAAGATGGCACTTGTGG CTTAGTAGAAGTTGAAAAAGGCGTTTTGCCTCAACTTGAACAGCCCTATGTGTTCATCAA ACGTTCGGATGCTCGAACTGCACCTCATGGTCATGTTATGGTTGAGCTGGTAGCAGAACT

In [6]: !tail data/SARS-COV-2Wuhan.fasta
TATTGACGCATACAAAACATTCCCACCAACAGAGCCTAAAAAGGACAAAAAGAAGAAGGC TGATGAAACTCAAGCCTTACCGCAGAGACAGAAGAAACAGCAAACTGTGACTCTTCTTCC TGCTGCAGATTTGGATGATTTCTCCAAACAATTGCAACAATCCATGAGCAGTGCTGACTC AACTCAGGCCTAAACTCATGCAGACCACACAAGGCAGATGGGCTATATAAACGTTTTCGC TTTTCCGTTTACGATATATAGTCTACTCTTGTGCAGAATGAATTCTCGTAACTACATAGC ACAAGTAGATGTAGTTAACTTTAATCTCACATAGCAATCTTTAATCAGTGTGTAACATTA GGGAGGACTTGAAAGAGCCACCACATTTTCACCGAGGCCACGCGGAGTACGATCGAGTGT ACAGTGAACAATGCTAGGGAGAGCTGCCTATATGGAAGAGCCCTAATGTGTAAAATTAAT TTTAGTAGTGCTATCCCCATGTGATTTTAATAGCTTCTTAGGAGAATGACAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA

A little code for reading FASTA

In [8]: import gzip
def loadFasta(filename):
""" Parses a classically formatted and possibly compressed FASTA file into two lists. One of headers and a second list of sequences.
The ith index of each list correspond." "
if (filename.endswith(".gz")):
fp = gzip.open(filename, 'r')
else:
fp = open(filename, 'r')
\# split at headers
data $=f p . r e a d() . s p l i t('>')$
fp.close()
\# ignore whatever appears before the 1st header data.pop(0)
headers = []
sequences = []
for sequence in data:
lines = sequence.split('\n')
headers.append(lines.pop(0))
\# add an extra "+" to make string "1-referenced"
sequences.append('+' + ''•join(lines))
return (headers, sequences)

In [9]: header, seq = loadFasta("data/SARS-COV-2Wuhan.fasta")
for i in range(len(header))
print(header[i])
print(len(seq[i])-1, "bases", seq[i][:30], "...", seq[i][-30:])
print()
NC_045512.2 |Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, complete genome
29903 bases +ATTAAAGGTTTATACCTTCCCAGGTAACA ... AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Let's take a minute to explore

Genome sequences are best understood by examining substrings
Often we examine all substrings of length k, called k-mers.
The statististics and patterns of k-mers can shed light on a genome's organization and local function.

Two simple rules to consider:

1) There are 4^{k} possible DNA k-mers
2) A linear sequence of length N has $N-k+1$-mers

ATGGAGAGCCTTGTCCCTGGTTTCAACGAGAAAACA

```
\begin{tabular}{rlll} 
ATGGAG & CCTTGT & CTGGTT & AACGAG \\
TGGAGA & CTTGTC & TGGTTT & ACGAGA
\end{tabular}
\[
(36-6+1)=31
\]

\section*{Genome "k-mer" statistics}

\begin{tabular}{rr} 
k & k-mers \\
3 & 64 \\
4 & 256 \\
5 & 1023 \\
6 & 3756 \\
7 & 10696 \\
8 & 20185 \\
9 & 26360 \\
10 & 28789 \\
11 & 29566 \\
12 & 29777 \\
13 & 29835 \\
14 & 29855 \\
15 & 29861 \\
16 & 29866 \\
17 & 29869 \\
18 & 29871 \\
19 & 29871 \\
20 & 29871 \\
21 & 29871 \\
22 & 29871 \\
23 & 29871 \\
24 & 29871
\end{tabular}
mers \(4^{\wedge} k\)
256
1023 10696 20185 26360 29566 29777 29835 29861 29866 29869 29871 29871 29871 29871 29871
\begin{tabular}{rr}
\(4 \wedge k\) & \(N-k+1\) \\
64 & 29901
\end{tabular}

\section*{2990} 29901 29900 29899 29898 29897 29896 29895 29894 29893 29892 29891 29890 29889 29888 29887 29887 29886 29884 29883 29883 29882 29881 29880
missin
missing
mis

\section*{What do k-mer statistics look like?}

In [90]: M import matplotlib
import matplotlib.pyplot as plot
\%matplotlib inline
\# Compute a histogram of kmer-counts (i.e. how many kmers appear 1 time, 2 times, 3 times...) \(k=6\)
maxcount \(=50\)
kmers \(=\) kmerCounts \((\) seq[0], \(k\) )
hist \(=[0\) for \(i\) in range(maxcount)]
for kmer in kmers:
count \(=\) kmers [kmer]
if (count < maxcount):
hist[count] += 1
fig = plot.figure(figsize=(10,6))
plot.plot([i for i in range(maxcount)], hist) plot.show()



Okay, there are 4326 -mers that appear only once, 430 that are repeated twice, and the fewer and fewer are repeated 3, 4,5 , and so on.

Meanwhile there are two 6-mers that are repeated more than 40 times
("TTGTTA" 42 times, and "TGTTAA" 41 times)

But are these sorts of counts typical?

\section*{How does it compare to a random sequence?}

In [131]: M import random
```

fig = plot.figure(figsize=(10,6))

```
for \(j\) in range(20)
\# Make a fake genome of random nucleotides
fake = '+' + ''.join(random.choices("ACGT", k=len(seq[0])-1))
\(\mathrm{k}=6\)
maxcount \(=50\)
kmers = kmerCounts(fake, k)
hist \(=\) [0 for i in range(maxcount)]
for kmer in kmers
count \(=\) kmers [kmer]
if (count < maxcount)
hist[count] += 1
if (count > 25)
print(kmer, count)
plot.plot([i for i in range(maxcount)], hist)
plot.show()


In a random sequence of the same length as SARS-COV-2, there would be far fewer unique 6 -mers (typically around 20). Also, most 6 -mers would appear approximately 7 times (roughly 29903/4096 = 7.3 times)

Also it would be rare for any 6 -mer to be repeated more than 25 times.

Conclusion... virus sequences aren't random patterns

\section*{Let's look at some key genes}

The "Spikes" of the viral envelope seek out the ACE2 receptors in order to infect a cell.
Eventually, an immune response is set off.
T-cells find infected cells and kill them, while noting the antigen that infected the cell
B-cells use the knowledge about the Spike sequence (acquired from T-cells) to generate antibodies that target the virus to inactivate it by gumming up its receptor interface.

The key point is learning to recognize the spike sequence.


\section*{Let's look at some key genes}

The "Spikes" of the viral envelope seek out the ACE2 receptors in order to infect a cell.
Eventually, an immune response is set off.
T-cells find infected cells and kill them, while noting the antigen that infected the cell

B-cells use the knowledge about the Spike sequence (acquired from T-cells) to generate antibodies that target the virus to inactivate it by gumming up its receptor interface.


The key point is learning to recognize the spike sequence.

\section*{How mRNA vaccines work}

\section*{https://youtu.be/7DlcRSvuvnw}

\section*{How do mRNA vaccines work?}


\section*{How a vaccine works}

\section*{It we introduce a proxy that "looks" sufficiently like the Spike, then we can set off the immune reaction, without having to go through the infection.}

\section*{From "Pfizer-BioNTech COVID-19 vaccine" wikipedia page:}

\section*{Sequence [edit]}

The modRNA sequence of tozinameran, the active ingredient in the Pfizer-BioNTech COVID-19 vaccine, is 4,284 nucleotides long, with a molecular weight of approximately \(1388 \mathrm{kDa} \cdot{ }^{[50][51]}\) It consists of a five-prime cap; a five prime untranslated region derived from the sequence of human alpha globin; a codon-optimized gene of the full-length spike protein of SARS-CoV-2 (bases 55-3879), including the signal peptide (bases 55-102) and two proline substitutions (K986P and V987P, designated "2P") that cause the spike to adopt a prefusion-stabilized conformation reducing the membrane fusion ability, increasing expression and stimulating neutralizing antibodies; \({ }^{[13][52]}\) followed by a three prime untranslated region (bases 3880-4174) combined from AES and mtRNR1 selected for increased protein expression and mRNA stability \({ }^{[53]}\) and a poly(A) tail comprising 30 adenosine residues, a 10 -nucleotide linker sequence, and 70 other adenosine residues (bases 4175-4284). \({ }^{[51]}\) The sequence contains no uridine residues; they are replaced by 1-methyl-3'-pseudouridine. \({ }^{[51]}\)

\section*{A look at the Spike, 'S', gene sequence}


\section*{A look at the Spike, 'S', gene sequence}

ATGTTTGTTTTTTCTTGTTTTATTGCCACTAGTCTCTAGTCAGTGTGTTAATCTTACAACCAGAACTCAATTACCCCCTGCATACACTAATTCTTTCACACGTGGTGTTTATTACC CTGACAAAGTTTTCAGATCCTCAGTTTTACATTCAACTCAGGACTTGTTCTTACCTTTCTTTTCCAATGTTACTTGGTTCCATGCTATACATGTCTCTGGGACCAATGGTACTAA GAGGTTTGATAACCCTGTCCTACCATTTAATGATGGTGTTTATTTTGCTTCCACTGAGAAGTCTAACATAATAAGAGGCTGGATTTTTGGTACTACTTTAGATTCGAAGACCCAG TCCCTACTTATTGTTAATAACGCTACTAATGTTGTTATTAAAGTCTGTGAATTTCAATTTTGTAATGATCCATTTTTGGGTGTTTATTACCACAAAAACAACAAAAGTTGGATGG AAAGTGAGTTCAGAGTTTATTCTAGTGCGAATAATTGCACTTTTGAATATGTCTCTCAGCCTTTTCTTATGGACCTTGAAGGAAAACAGGGTAATTTCAAAAATCTTAGGGAATT TGTGTTTAAGAATATTGATGGTTATTTTAAAATATATTCTAAGCACACGCCTATTAATTTAGTGCGTGATCTCCCTCAGGGTTTTTCGGCTTTAGAACCATTGGTAGATTTGCCA ATAGGTATTAACATCACTAGGTTTCAAACTTTACTTGCTTTACATAGAAGTTATTTGACTCCTGGTGATTCTTCTTCAGGTTGGACAGCTGGTGCTGCAGCTTATTATGTGGGTT ATCTTCAACCTAGGACTTTTCTATTAAAATATAATGAAAATGGAACCATTACAGATGCTGTAGACTGTGCACTTGACCCTCTCTCAGAAACAAAGTGTACGTTGAAATCCTTCAC TGTAGAAAAAGGAATCTATCAAACTTCTAACTTTAGAGTCCAACCAACAGAATCTATTGTTAGATTTCCTAATATTACAAACTTGTGCCCTTTTGGTGAAGTTTTTAACGCCACC AGATTTGCATCTGTTTATGCTTGGAACAGGAAGAGAATCAGCAACTGTGTTGCTGATTATTCTGTCCTATATAATTCCGCATCATTTTCCACTTTTAAGTGTTATGGAGTGTCTC CTACTAAATTAAATGATCTCTGCTTTACTAATGTCTATGCAGATTCATTTGTAATTAGAGGTGATGAAGTCAGACAAATCGCTCCAGGGCAAACTGGAAAGATTGCTGATTATAA TTATAAATTACCAGATGATTTTACAGGCTGCGTTATAGCTTGGAATTCTAACAATCTTGATTCTAAGGTTGGTGGTAATTATAATTACCTGTATAGATTGTTTAGGAAGTCTAAT CTCAAACCTTTTGAGAGAGATATTTCAACTGAAATCTATCAGGCCGGTAGCACACCTTGTAATGGTGTTGAAGGTTTTAATTGTTACTTTCCTTTACAATCATATGGTTTCCAAC CCACTAATGGTGTTGGTTACCAACCATACAGAGTAGTAGTACTTTCTTTTGAACTTCTACATGCACCAGCAACTGTTTGTGGACCTAAAAAGTCTACTAATTTGGTTAAAAACAA ATGTGTCAATTTCAACTTCAATGGTTTAACAGGCACAGGTGTTCTTACTGAGTCTAACAAAAAGTTTCTGCCTTTCCAACAATTTGGCAGAGACATTGCTGACACTACTGATGCT GTCCGTGATCCACAGACACTTGAGATTCTTGACATTACACCATGTTCTTTTGGTGGTGTCAGTGTTATAACACCAGGAACAAATACTTCTAACCAGGTTGCTGTTCTTTATCAGG ATGTTAACTGCACAGAAGTCCCTGTTGCTATTCATGCAGATCAACTTACTCCTACTTGGCGTGTTTATTCTACAGGTTCTAATGTTTTTCAAACACGTGCAGGCTGTTTAATAGG GGCTGAACATGTCAACAACTCATATGAGTGTGACATACCCATTGGTGCAGGTATATGCGCTAGTTATCAGACTCAGACTAATTCTCCTCGGCGGGCACGTAGTGTAGCTAGTCAA TCCATCATTGCCTACACTATGTCACTTGGTGCAGAAAATTCAGTTGCTTACTCTAATAACTCTATTGCCATACCCACAAATTTTACTATTAGTGTTACCACAGAAATTCTACCAG TGTCTATGACCAAGACATCAGTAGATTGTACAATGTACATTTGTGGTGATTCAACTGAATGCAGCAATCTTTTGTTGCAATATGGCAGTTTTTGTACACAATTAAACCGTGCTTT AACTGGAATAGCTGTTGAACAAGACAAAAACACCCAAGAAGTTTTTGCACAAGTCAAACAAATTTACAAAACACCACCAATTAAAGATTTTGGTGGTTTTAATTTTTCACAAATA TTACCAGATCCATCAAAACCAAGCAAGAGGTCATTTATTGAAGATCTACTTTTCAACAAAGTGACACTTGCAGATGCTGGCTTCATCAAACAATATGGTGATTGCCTTGGTGATA TTGCTGCTAGAGACCTCATTTGTGCACAAAAGTTTAACGGCCTTACTGTTTTGCCACCTTTGCTCACAGATGAAATGATTGCTCAATACACTTCTGCACTGTTAGCGGGTACAAT CACTTCTGGTTGGACCTTTGGTGCAGGTGCTGCATTACAAATACCATTTGCTATGCAAATGGCTTATAGGTTTAATGGTATTGGAGTTACACAGAATGTTCTCTATGAGAACCAA AAATTGATTGCCAACCAATTTAATAGTGCTATTGGCAAAATTCAAGACTCACTTTCTTCCACAGCAAGTGCACTTGGAAAACTTCAAGATGTGGTCAACCAAAATGCACAAGCTT TAAACACGCTTGTTAAACAACTTAGCTCCAATTTTGGTGCAATTTCAAGTGTTTTAAATGATATCCTTTCACGTCTTGACAAAGTTGAGGCTGAAGTGCAAATTGATAGGTTGAT CACAGGCAGACTTCAAAGTTTGCAGACATATGTGACTCAACAATTAATTAGAGCTGCAGAAATCAGAGCTTCTGCTAATCTTGCTGCTACTAAAATGTCAGAGTGTGTACTTGGA CAATCAAAAAGAGTTGATTTTTGTGGAAAGGGCTATCATCTTATGTCCTTCCCTCAGTCAGCACCTCATGGTGTAGTCTTCTTGCATGTGACTTATGTCCCTGCACAAGAAAAGA ACTTCACAACTGCTCCTGCCATTTGTCATGATGGAAAAGCACACTTTCCTCGTGAAGGTGTCTTTGTTTCAAATGGCACACACTGGTTTGTAACACAAAGGAATTTTTATGAACC ACAAATCATTACTACAGACAACACATTTGTGTCTGGTAACTGTGATGTTGTAATAGGAATTGTCAACAACACAGTTTATGATCCTTTGCAACCTGAATTAGACTCATTCAAGGAG GAGTTAGATAAATATTTTAAGAATCATACATCACCAGATGTTGATTTAGGTGACATCTCTGGCATTAATGCTTCAGTTGTAAACATTCAAAAAGAAATTGACCGCCTCAATGAGG TTGCCAAGAATTTAAATGAATCTCTCATCGATCTCCAAGAACTTGGAAAGTATGAGCAGTATATAAAATGGCCATGGTACATTTGGCTAGGTTTTATAGCTGGCTTGATTGCCAT AGTAATGGTGACAATTATGCTTTGCTGTATGACCAGTTGCTGTAGTTGTCTCAAGGGCTGTTGTTCTTGTGGATCCTGCTGCAAATTTGATGAAGACGACTCTGAGCCAGTGCTC AAAGGAGTCAAATTACATTACACATAA 3822

\section*{Mapping to Amino Acid Residues}
```

M codon ={ \# Maps an RNA triplet of nucelotides to a 1-letter Amino Acid Abbrevation
"AAA": 'K', "AAG": 'K', "AAC": 'N', "AAT": 'N',
"AGA": 'R', "AGG": 'R', "AGC": 'S', "AGT": 'S',
"ACA": 'T', "ACG": 'T', "ACC": 'T', "ACT": 'T',
"ATA": 'I', "ATG": 'M', "ATC": 'I', "ATT": 'I', A dictionary that encodes the CODON
"GAA": 'E', "GAG": 'E', "GAC": 'D', "GAT": 'D', mappings of DNA nucleotides to
"GGA": 'G', "GGG": 'G', "GGC": 'G', "GGT": 'G',
"GCA": 'A', "GCG": 'A', "GCC": 'A', "GCT": 'A',
"GTA": 'V', "GTG": 'V', "GTC": 'V', "GTT": 'V',
"CAA": 'Q', "CAG": 'Q', "CAC": 'H', "CAT": 'H',
"CGA": 'R', "CGG": 'R', "CGC": 'R', "CGT": 'R',
"CCA": 'P', "CCG": 'P', "CCC": 'P', "CCT": 'P',
"CTA": 'L', "CTG": 'L', "CTC": 'L', "CTT": 'L',
"TAA": '*', "TAG": '*', "TAC": 'Y', "TAT": 'Y',
"TGA": '*', "TGG": 'W', "TGC": 'C', "TGT": 'C',
"TCA": 'S', "TCG": 'S', "TCC": 'S', "TCT": 'S',
"TTA": 'L', "TTG": 'L', "TTC": 'F', "TTT": 'F'
}
AminoAcid = { \# Maps 1-letter Amino Acid Abbrevations to their full name
'A': 'Alanine', 'C': 'Cysteine', 'D': 'Aspartic acid', 'E': 'Glutamic acid', 'F': 'Phenylalanine',
'G': 'Glycine', 'H': 'Histidine', 'I': 'Isoleucine', 'K': 'Lysine', 'L': 'Leucine', 'M': 'Methionine',
'N': 'Asparagine', 'P': 'Proline', 'Q': 'Glutamine', 'R': 'Arginine', 'S': 'Serine',
'T': 'Theronine', 'V': 'Valine', 'W': 'Tryptophan', 'Y': 'Tyrosine',' '*': 'STOP'
}

```

\section*{"Spike" as a peptide sequence}

In [139]: M peptide = ''.join([codon[spike[i:i+3]] for in range(0,len(spike),3)]) print(peptide)

MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLL IVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINIT RFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWN RKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEI YQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPC SFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENSVAYS NNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKV TLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASA LGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVF LHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQ KEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT*

\section*{But there's a new virus in town}

In [65]: header2, seq2 = loadFasta("data/SARS-COV-20micron.fasta")
for \(i\) in range(len(header2)):
print(header2[i])
print(len(seq2[i])-1, "bases", seq2[i][:30], "...", seq2[i][-30:])
print()
OL672836.1 Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/human/BEL/rega-20174/2021, complete genome 29684 bases +AGATCTGTTCTCTAAACGAACTTTAAAAT ... CACGCGGAGTACGATCGAGTGTACAGTGAA

In [66]: omicron \(=\operatorname{seq} 2[0]\)
spike \(=\) omicron[21497:25310]
peptide = ''.join([codon[spike[i:i+3]] for i in range(0,len(spike),3)])
print(peptide)
MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHVISGTNGTKRFDNPVLPFNDGVYFASIEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIK VCEFQFCNDPFLDHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPIIVREPEDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSG WTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFDEVFNATRFASVYAWNRKRISNCVADYSVLYNLAPFFTFKCYGVSP TKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGNIADYNYKLPDDFTGCVIAWNSNKLDSKVSGNYNYLYRLFRKSNLKPFFERDISTEIYQAGNKPCNGVAGFNCYFPLRSYSFRPTYGVGHQPYRVV VLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLKGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQGVNCTEVPVAIHADQLTPTWRVYST GSNVFQTRAGCLIGAEYVNNSYECDIPIGAGICASYQTQTKSHRRARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLKR ALTGIAVEQDKNTQEVFAQVKQIYKTPPIKYFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFKGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGA ALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNHNAQALNTLVKQLSSKFGAISSVLNDIFSRLDKKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIR ASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELD SFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT *

\section*{A few changes can make a huge difference} FVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTODLFLPFFFS

TTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGMIFGTTLDSKTQSLLIV VTUFHVI--SGTNGTKRFDNPVLPFNDGVYFASIEK SNIIRGMIFGTTLDSKTQSLLIV

NATNWIKVCEFQFCNDPFLGVYYHKNNKSUMESEFRVYSSANNCTFEXVSQPFLMDLE NATNVIKVCEFQFCNDPFLD---HKNNKSUMESEFRVYSSANNCTF EWVSQPFLMDLE GKOGNFKNLREFVFKNIDGYFKIYSKHTPINL--VRDLPOGFSALEPLVDLPIGINITRF GKQGNFKNLREFVFKNIDGYFKIYSKHTPIIVREPEDLPOGFSALEPLVDLPIGINITRF

OTLLALHRSYLTPGDSSSGITAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSE OTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSE

KCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAUNRKRI KKCTLKSFTVEKGIYQTSMFRVQPTESIVRFPNITNLCPFDEVFNATRFASVYAWNRKRI

SNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKI NCVADYSVLYNLAPFFTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGNI

ADYNYKLPDDFTGCVIAUNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGST DYNYKLPDDFTGCVIAUNSNKLDSKVSGNYNYLYRLFRKSNLKPFERDISTEIYQAGNK

PCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKC CNGVAGFNCYFPLRSYSFRPTYGVGHQPYRVWLSFELLHAPATVCGPKKSTNLVKNKC

WFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVI VFNFNGLKGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVI

PGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFOTRAGCLIGAEHVNV TPGTNTSNQVAVLYQGVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEYNN

SYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNF SYECDIPIGAGICASYQTQTKSHRRARSVASQSIIAYTMILGAENSVAYSNNSIAIPTNF


\footnotetext{
micron
}

Wuhan
omicron
unan
micron

Wuhan Omicron

Whan

Wuhan
Omicron
Wuhan

Uhan
omicron

Wuhan

Wuhan
Omicron

TISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNT TISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLOYGSFCTOLKRALTGIAVEODKNT QEVFAQVKQIYKTPPIKYFGGFNF SQILPDPSKPSKRSFIEDLL FNKVTLADAGFIKQYG

DCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPF CLLGDIAARDLICAOKFKGLTVLPPLLTDEMIAOYTSALLAGTITSGWTFGAGAALOIPF

MOMAYRFNGIGVTONVLYENOKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNNONAQA AMQMAYRFNGIGVTONVLYENOKLIANOFNSAIGKIDOSLSSTASALGKLQDWNHHNQA

LNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVOIDRLITGRLOSLOTWTOOLIRAAEI LNTLVKOLSSKFGAISSVLNDIFSRLDKVEAEVOTDRLITGRLOSLOTWTOOLTRAAEI
\(\qquad\)
RASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVF LHVTYVPAQEKNFTTA RASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTVVPAQEKNFTTA

PAICHDGKAHFPREGVFVSNGTHNFVTQRNFYEPQIITTDNTFVSGNCDWIGIVNNTVY PAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDWIGIVNNTVY DPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASWNIQKEIDRLNEVAKNLNESLI

DLQELGKYEQYIKWPWYIWLGFIAGLIAIVINTIMLCCMTSCCSCLKGCCSCGSCCKFDE DLOELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDE

DOSEPVLKGVKLHYT DOSEPVLKGVKLHYT

4143-145 means that 3
residues are deleted

\section*{Next time}

We'll go hunting for virus fossils.
```

