Recall from last time that the Brute Force approach for finding a common 10-mer motif common to 10 sequences of length 80 bases was going to take up roughly 30,000 years.

Today we will consider alternative and non-obvious approaches for solving this problem.

We will trade one old man (us) for another (an Oracle).

There will be a Python/Jupyter crash course next Tuesday night, Jan 28, from 5:00pm-6:30pm.

Finding TFBS Motifs in our Lifetime
Recall from last lecture

The following set of 10 sequences have an embedded noisy motif, \textit{TAGATCCGAA}.

1. \texttt{tagtgctttttgagtgTAGATCTGAAgggaagtattttcaccagttcgggtcaacccagcgaggtgacttaat}
2. \texttt{cgcgactcgcgcgtcagttatgcacgttagacccaaacggagtTTGGATCCGAAactggagtttatcacggagtcctt}
3. \texttt{gttaacttgtagcgctggTAGACCCGAAataaatgttgttgctgcattagcgagctgacatacagtaggggaatgcgt}
4. \texttt{aacatcaggcttttgatataaacaatattaagcagcTAAATCCGAAattgacctgtgatgacataaagcagatgcccgtcgggg}
5. \texttt{accaccggataggctgtttatTTAGGTCCAAAaggtagtatctgtaataattgctcagccatgtcaatgtgcggcattccac}
6. \texttt{TAGATTCGAAtcgatcgtggtttctccctctgtggttaacagggggtctgcaatgtgcggcacttggtacc}
7. \texttt{gaatggttccggtgcatatcagccggttctcttaactttgccgggtagTCAGATCCGAAcgtctctggaggggctgtgcgctta}
8. \texttt{atgtataactagacacttcattacgcctttaggcggagacattttgctcactacaagggctacttgtagTAGATCCGTTAGATCCGAA}
9. \texttt{ttcttacacccctttcttTAGATCAGACcgatgtggcccatcttttttcgaagtctctccatttgctctgtgatgac}
10. \texttt{ctacccatatgtaaaaaacacactactaaccgtagctcggtcttttctgtgcagccctaactcaggtAGATCCGAAatccg9+9+9+9+9+8+9+9+8+10 = 89}

Some notes:
1. There are no exact matches
2. The consensus motif gives a good score
Consensus Scoring Function

- We developed an $O(k)$ consensus scoring function to address noise (inexact matches)
- But, we need to apply it an exponential number, $O(N^M)$ of times!
- Here's the scoring function...

```python
In [8]: def Score(s, DNA, k):
    """    compute the consensus SCORE of a given k-mer
    alignment given offsets into each DNA string.
    s = list of starting indices, 1-based, 0 means ignore
    DNA = list of nucleotide strings
    k = Target Motif length
    """
    score = 0
    for i in range(k):
        # loop over string positions
        cnt = dict(zip("acgt",(0,0,0,0)))
        for j, sval in enumerate(s):
            # loop over DNA strands
            base = DNA[j][sval+i]
            cnt[base] += 1
        score += max(cnt.values())
    return score
```
And here's the Score we're looking for...

```
In [9]: seqApprox = [
    'tagtggttttttgagtgtagatctgaagggaaagtattttccaccagttcgggtcaccgccagagggcagggtacattat',
    'cgcgacgtgctgtcacagtttaagcaccagaattgttctggagcttttaacctttatcag',
    'gttaactttgtgagccttgtagacccgaaataatatttggctgtcgtctacagcagagagctcagtttagggaatctg',
    'aacatcagcttggattaaacacattaagcagtaatcgcgaaatggcctgatgacaatcggcagatcgcgctccggg',
    'accacgggtgaggtcctgttattaggtgctgccaaaggtatagttactctgtaaatagggcgtcagcattcacc',
    'tagactgtaaatgctgttcctcctcctcaggttttaacgaggggctccgacctttgcctgcctgtgcgcgaacctttgaccc',
    'gaatattgtgtgccatctacattttcctttgaacttgtggctgttgctctgtgccgatcggctcagatgggaatccttcg',
    'agtatactagacatttaagcctgggtaggaggtctgtggctgtgatctgtgagatccgta',
    'ttcctacacccctccctttagatcgaacaccagttggcgcctatctctctttgttagctcttgctcttgacatttg',
    'ctacctcgataaaacacatctactataacgtagctgctccttctgctgactgctctgcctaaccctacaggctgatccgaaattcg']
```

```
In [10]: print(Score([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], seqApprox, 10))

89
```

```
In [12]: %timeit Score([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], seqApprox, 10)

26.2 µs ± 437 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
```

So even at a blazing 40µs we'll need many lifetimes to compute the 70^{10} scores
Pruning Trees

- One method for reducing the computational cost of a search algorithm is to prune the space of permutations that could not possibly lead to a better answer than the current best answer.
- Pruning decisions are based on solutions to subproblems that appear early on and offer no hope.
- How does this apply to our Motif finding problem?
- Consider any permutation of offsets that begins with the indices [25, 63, 10, 43, ...].

Just based on the first 4 indices the largest possible score is $17 + (6 \times 10) = 77$, which assumes that all 6 remaining strings match perfectly at all 10 positions.

DNA[0][25:35]	a a g g g a a a g t
DNA[1][63:73]	g t t t a a t c g g
DNA[2][10:20]	a g c c t g g t t a
DNA[3][43:53]	t t g a c c t g a t

<table>
<thead>
<tr>
<th>Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>a [2, 1, 0, 1, 1, 2, 1, 1, 1, 1]</td>
</tr>
<tr>
<td>c [0, 0, 1, 1, 1, 1, 0, 1, 0, 0]</td>
</tr>
<tr>
<td>g [1, 1, 2, 1, 1, 1, 1, 1, 2, 1]</td>
</tr>
<tr>
<td>t [1, 2, 1, 1, 1, 0, 2, 1, 1, 2]</td>
</tr>
<tr>
<td>Score = 17</td>
</tr>
</tbody>
</table>

If the best answer so far is 79, there is no need to consider the 70^6 offset permutations that start with these 4 indices.
Search Trees

- Our standard method for enumerating permutations can be considered as a traversal of leaf nodes in a search tree.
- Suppose after checking the first few offsets we can determine that any score of children nodes could not beat the best score seen so far?

![Search tree of the Cartesian product]

$(0,1,2) \times (0,1,2) \times (0,1,2)$
Branch-and-Bound Motif Search

- Since each level of the tree goes deeper into search, discarding a prefix discards all following branches.
- This saves us from looking at \((N-k+1)^{M\text{-depth}}\) leaves.
- Note our enumeration of tree-branches is depth-first.
- We'll formulate of trimming algorithm as a recursive algorithm.
Recursive Exploration of a Search Tree

```python
In [17]:
bestAlignment = []
prunedPaths = 0

def exploreMotifs(DNA, k, path, bestScore):
    """ Search for a k-length motif in the list of DNA sequences by exploring all paths in a search tree. Each call extends path by one. Once the path reaches the number of DNA strings a score is computed. """
    global bestAlignment, prunedPaths
    depth = len(path)
    M = len(DNA)
    if (depth == M):
        # here we have an index in all M sequences
        s = Score(path, DNA, k)
        if (s > bestScore):
            bestAlignment = [p for p in path]
            return s
        else:
            return bestScore
    else:
        # Let's consider if an optimistic best score can beat the best score so far
        if (depth > 1):
            OptimisticScore = k**(M-depth) + Score(path, DNA, k)
        else:
            OptimisticScore = k*M
        if (OptimisticScore < bestScore):
            prunedPaths = prunedPaths + 1
            return bestScore
        else:
            for s in range(len(DNA[depth])-k+1):
                newPath = tuple([i for i in path] + [s])
                bestScore = exploreMotifs(DNA, k, newPath, bestScore)
            return bestScore
```
Let’s try it

```python
def BranchAndBoundMotifSearch(DNA, k):
    """ Finds a k-length motif within a list of DNA sequences""
    global bestAlignment, prunedPaths
    bestAlignment = []
    prunedPaths = 0
    bestScore = 0
    bestScore = exploreMotifs(DNA, k, [], bestScore)
    print(bestAlignment, bestScore, prunedPaths)

%time BranchAndBoundMotifSearch(seqApprox[0:6], 10)
```

[17, 47, 10, 33, 21, 0] 53 0615931
CPU times: user 3min 17s, sys: 0 ns, total: 3min 17s
Wall time: 3min 17s

Recall that last time it took almost 13 mins to search the first 4 sequences. Here we took nearly ¼ of that to search 6 sequences.
Observations

- For our problem instance, Branch-and-Bound Motif finding is significantly faster
 - It found a motif in the first 6 strings in less time than the Brute Force approach found a solution in the first 4 strings
 - More than $70^2 \approx 5000$ times faster
 - It did so by trimming more than 8 Million paths
 - Trimming added extra calls to Score (no worse than doubling the worst-case number of calls), but ended up saving even more hopeless calls along longer paths.
 - In practice, Branch-and-Bound, significantly improves average performance

- Does this improve the worst-case performance from $O(kN^M)$?
 - What if all of our motifs were found at the end of each DNA string?
 - How do we avoid these worse case data sets?
 - Randomize the search-tree traversal order
We need a new approach

- Enumerating every possible permutation of motif positions is still not getting us the speed we want.
- Let's try another tried-and-tested approach to algorithm design, mixing up the problem
 - Suppose that some Oracle could tell us what the motif is...
 - How long would it take us to find its position in each string?
 - We could compute the Hamming Distance from our given motif to the k-mer at every position in each DNA sequence and keep track of the smallest distance and its position on each string.
 - These positions are our best guess of where the motif can be found on each string.
- Let's call this approach *scanning-and-scoring* to find a given motif.
Scanning-and-Scoring a Motif

```python
In [30]: def ScanAndScoreMotif(DNA, motif):
    totalDist = 0
    bestAlignment = []
    k = len(motif)
    for seq in DNA:
        minHammingDist = k + 1
        for s in range(len(seq) - k + 1):
            HammingDist = sum([1 for i in range(k) if motif[i] != seq[s+i]])
            if (HammingDist < minHammingDist):
                bestS = s
                minHammingDist = HammingDist
                bestAlignment.append(bestS)
        totalDist += minHammingDist
    return bestAlignment, totalDist

In [31]: print(ScanAndScoreMotif(seqApprox, "tagatccgaa"))
%timeit ScanAndScoreMotif(seqApprox, "tagatccgaa")

([17, 47, 18, 33, 21, 0, 46, 79, 16, 65], 11)
1.69 ms ± 16.2 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
```

Wow, we can test over 900 motifs per second!
Scan-and-Score Motif Performance

- There are $M(N-k+1)$ positions to test the motif, and each test requires k tests.

 So each scan is $O(MNk)$

- So where do we get candidate motifs?
- Can we try all of them?
 - There are $4^{10} = 1048576$ in our example.
 - 1048576 motifs \times 1.09 mS \approx 19 mins
 - Not fast, but much less than a lifetime
 - $O(4^kMNk)$ vs. $O(N^Mk)$

- This approach is called a **Median String Motif Search**

- Recall from last Lecture that a string that minimizes Hamming distance is like finding a *middle* or *median* string that is closer to all instances than the instances are to each other.
Let’s do it!

```python
import itertools

def MedianStringMotifSearch(DNA, k):
    """ Consider all possible 4^k motifs""
    bestAlignment = []
    minHammingDist = k*len(DNA)
    kmer = ''
    for pattern in itertools.product('acgt', repeat=k):
        motif = ''.join(pattern)
        align, dist = ScanAndScoreMotif(DNA, motif)
        if (dist < minHammingDist):
            bestAlignment = [p for p in align]
            minHammingDist = dist
            kmer = motif
    return bestAlignment, minHammingDist, kmer

%time MedianStringMotifSearch(seqApprox, 10)
```

CPU times: user 18min 40s, sys: 0 ns, total: 18min 40s
Wall time: 18min 40s

Out[37]: ([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa')

The right answer in under 20 mins! Much less than a lifetime.
Notes on Median String Motif Search

- Similarities between finding and alignment with minimal Hamming Distance and maximizing a Motif's consensus score.
- In fact, if instead of counting mismatches as in the code fragment:

 \[
 \text{HammingDist} = \sum([1 \text{ for } i \text{ in } \text{range}(k) \text{ if } \text{motif}[i] \neq \text{seq}[s+i]])
 \]

we had counted matches

 \[
 \text{Matches} = \sum([1 \text{ for } i \text{ in } \text{range}(k) \text{ if } \text{motif}[i] = \text{seq}[s+i]])
 \]

and found the maximum(TotalMatches) instead of the min(TotalHammingDistance)
we would be using the same measure as Score().

- Thus, we expect MedianStringMotifSearch() to give the same answer as either BruteForceMotifSearch() or BranchAndBoundMotifSearch().
- However, the \(4^k\) term raises some concerns. If \(k\) were instead 20, then we'd have to Scan-and-Score more than \(10^{12}\) times. Another not-in-a-lifetime algorithm.
- We can also apply the Branch-and-Bound approach to the Median string method, but, as before it would only improve the average case.
Other ways to guess the motif?

- If we knew that the motif that we are looking for was "contained" somewhere in our DNA sequences we could test the \((N-k+1)M\) motifs from our DNA, giving a \(O(N^2M^2)\) algorithm.

- Unfortunately, as you may recall, our motif does not actually appear in our data.
- Let’s not be discouraged and try it anyway
Let's consider only Motifs seen in the DNA

```python
In [39]:
def ContainedMotifSearch(DNA, k):
    """ Consider only motifs from the given DNA sequences""
    motifSet = set()
    for seq in DNA:
        for i in range(len(seq)-k+1):
            motifSet.add(seq[i:i+k])
    print("{} Motifs in our set" % len(motifSet))
    bestAlignment = []
    minHammingDist = k*len(DNA)
    kmer = ''
    for motif in motifSet:
        align, dist = ScanAndScoreMotif(DNA, motif)
        if (dist < minHammingDist):
            bestAlignment = [s for s in align]
            minHammingDist = dist
            kmer = motif
    return bestAlignment, minHammingDist, kmer

%time ContainedMotifSearch(seqApprox, 10)

709 Motifs in our set
CPU times: user 771 ms, sys: 0 ns, total: 771 ms
Wall time: 769 ms

Out[39]: ([17, 31, 18, 33, 21, 0, 46, 70, 16, 65], 17, 'tagatccaa')

Not exactly the motif we wanted (off by a 'g'), [17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa', but it was fast!

Comp 555 - Fall 2021
Insights from the consensus score matrix

If we call Score([17, 31, 18, 33, 21, 0, 46, 70, 16, 65], seqApprox, 10)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>t a g a t c c t</td>
<td>t a g a c c a a</td>
<td>t a g a c c c g a</td>
<td>t a a a t c c g a</td>
<td>t a g g t c c a a</td>
<td>t a g a t t c g a</td>
<td>c a g a t c c g a</td>
<td>t a g a t c c g t a</td>
<td>t c g a t c c a a</td>
<td>t c g a t c c a a</td>
</tr>
</tbody>
</table>

Consensus: t a g a t c c g a a

Score = 87

Any Ideas?

Comp 555 - Fall 2021
The consensus motif’s hamming distance can be no more than the "contained" string’s. Why?

Look for a "contained" motif, and then do one last scoring pass with the consensus motif. That was fast!
Dad, are we there yet?

- We got the answer that we were looking for, **but**

- How can we be sure it will always give the correct answer?
  - Our other methods (branch and bound & median search) were exhaustive, they examined every possibility
  - This method considers only a subset of possible solutions, and picks the best one in a greedy fashion
  - What if there had been ties among the candidate motifs?
  - What if the consensus score (87% matches) had been lower
  - Would we, should we, be satisfied?

- It's one thing to be greedy, and another to be both **greedy and biased**
  - Our method is greedy in that it considers only the best contained motif, greedy methods are subject to falling into **local minimums**
  - Since we consider only subsequences as motifs we introduce bias

- Recall that Consensus can generate motifs not seen in our data
A randomized approach to motif finding

- One way to avoid bias and local minima is to introduce randomness
- We can generate candidate motifs from our data by treating the set of all possible offsets as a distribution
  - Likely motif candidates from this distribution are those generated by Consensus
  - Consensus strings can then be tested using Scan-and-Score and these alignments lead to new consensus strings
  - Eventually, we should converge to some local minimal answer
- To avoid finding a local minimum, we try several random starts, and search for the best score amongst all these starts.
- A randomized algorithm does not guarantee an optimal solution. Instead it promises a good/plausible answer on average, and one that is not susceptible to a worse-case data sets as our greedy/biased method was.
A Randomized Motif Search

```
import random

def RandomizedMotifSearch(DNA, k):
 """ Searches for a k-length motif that appears in all given DNA sequences. It begins with a random set of candidate consensus motifs derived from the data. It refines the motif until a true consensus emerges."""

 # Seed with motifs from random alignments
 motifSet = set()
 for i in range(500):
 randomAlignment = [random.randint(0, len(DNA[j]) - k) for j in range(len(DNA))]
 motif = Consensus(randomAlignment, DNA, k)
 motifSet.add(motif)

 bestAlignment = []
 minHammingDist = k * len(DNA)
 kmer = ''
 testSet = motifSet.copy()
 while (len(testSet) > 0):
 print(len(motifSet), end=', ')
 nextSet = set()
 for motif in testSet:
 align, dist = ScanAndScoreMotif(DNA, motif)
 # add new motifs based on these alignments
 newMotif = Consensus(align, DNA, k)
 if (newMotif not in motifSet):
 nextSet.add(newMotif)
 if (dist < minHammingDist):
 bestAlignment = [s for s in align]
 minHammingDist = dist
 kmer = motif
 testSet = nextSet.copy()
 motifSet = motifSet | nextSet
 return bestAlignment, minHammingDist, kmer
```

Creates 500 random 'offset' vectors, finds their consensus motif, and uses these 500 as candidate k-mers.

Score each candidate and see if its offsets lead to a new motif candidate. If so add it to the next set to be considered.

This set union keeps track of all the k-mers we've considered.
Let’s try it

Randomized algorithms need to be run multiple times to insure a stable solution
Lessons Learned

● We can find Motifs in our lifetime
  ○ Practical exhaustive search algorithm for small k, MedianStringMotifSearch()
  ○ Practical fast algorithm RandomizedMotifSearch(DNA, k)
● Three algorithm design approaches "Branch-and-Bound", "Greedy", and "Randomized"
● Reversing the objective, guessing an answer, and validating it (Needs good guesses).
● The power of randomness
  ○ Not susceptible to worse case data
  ○ Avoids local minimums that plague some greedy algorithms