Searching for Shared Patterns

Problem Set #1 is online and due on 2/16/2020
Initiating Transcription

- As a precursor to transcription (the reading of DNA to construct RNAs that eventually leading to protein synthesis) special proteins bind to the DNA, and separate it to enable its reading.
- How do these proteins know where the coding genes are in order to bind?
- Genes are relatively rare
- $O(1,000,000,000)$ bases/genome
- $O(10000)$ genes/genome
- $O(1000)$ bases/gene
- Approximately 1% of DNA codes for genes (10^3 10^4/10^9)
Regulatory Regions

- RNA polymerases seek out regulatory or promoting regions located 100-1000 bp upstream from the coding region.
- They work in conjunction with special proteins called transcription factors (TFs) whose presence enables gene expression.
- Within these regions are the Transcription Factor Binding Sites (TFBS), special DNA sequence patterns known as motifs that are specific to a given transcription factor.
- A Single TF can influence the expression of many genes. Through biological experiments one can infer, at least a subset of these affected genes.
Transcription Factor Binding Sites

- A TFBS can be located anywhere within the regulatory region.
- TFBS may vary slightly across different regulatory regions since non-essential bases could mutate.
- Transcription factors are robust (they will still bind) in the presence of small sequence differences by a few bases.

```
5' - cgaagttcag - 3'
```

```
ccattttagg
```

```
cgaggtctgtcacacattcctttcaga
```
Identifying Motifs: Complications

- We don’t know the motif sequence for every TF
- We don’t know where it is located relative to a gene’s start
- Moreover, motifs can differ slightly from one gene to the next
- We only know that it occurs somewhere near genes that share a TF
- How to discern a Motif’s frequent similar pattern from random patterns?
- How is this problem different that finding frequent k-mers from Lecture 2?
Let's look for an Easy Motif

1 tagtggtctttttgagtgtagatccgaagggaaaagtatttccaccagttcggggtcaccaccagggcagggtcctaat
2 cgcgactcggcgctacagttatcgacgttttagacaaaaacggagttagatccgaactggagtttatcggagtccttt
3 gttacttttgagccctgtgattagatccgaatatataattttggtgctgcatagcggagctgacatagagtaggggaaaaatggt
4 aacactcaggcttttgattaaaaacatatttaagcagcgtagatccgaattgacctgtagacaataacggaacatgcggccgtccggg
5 accaccggataaggcgtcttttatagatccgaaggtagttatcgaataaatggctcgccatgtcaatgtggcgcattccac
6 tagatccgaatcgtacgttgtttcctccctcttgtggttaacgaggggtccgaccttgctgcatgtgcggcaactttgtacc
7 gaaatggttccggtgcagatcaggccgttctctttaacttgccggtgtagatccgaacgttctcttgagggtctgtgcgcta
8 atgtatactagacattctaaacgctcgtctatttgccggagaccattttgctcactacaagaaggtactgtgtagatccgaa
9 ttcctacacccttttttagatccgaacctgttgccgcacatctttttccagtcctttgtaacctcccattttgtctgtgatgac
10 ctacctatgtaaaacacatctactacagctagtccgggtctttttctgtgctgccctaacctacaggttagatccgaattcgc

Problem: Given M sequences of length N find any k-mer that appears in each sequence.

How would you go about finding a 10-mer that appears in every one of these 10 strings?
Sneak Peek at the Answer

1. `tagtggtcttttgagtgTAGATCCGAAgggaagttatattcccaccagttcggggtcacccagcagggcgagggtgacttaat`
2. `cgccgactcggcgctacagttatcgcacggttagacccaaacggagtTAGATCCGAAactggagttaatcgagagtccttt`
3. `gttacttgtagcctttagTAGATCCGAAatatttctttggctcatagcggagctcagacatagtgaggggaaatgctgt`
4. `aaccactcaggcttttgattaacatannttagacagcTAGATCCGAAttgacctgtgataaatacggaacatgcgggtccgg`
5. `accaccggataggctttatatAGATCCGAAaggtagtactgataataatggctcagccatgtcaatgtgctcgaggatcccac`
6. `TAGATCCGAActgatctgtttctcttctgttgggttaagggggtcggccaccttgctcagcagtgetcggagactttgtaacc`
7. `gaaatgttgggtgcgtagcagtgcggcgtttctcttaacttggcggtgTAGATCCGAAcgtctctgggagggcgtctgctgctga`
8. `atgtataactagacattctacaccgctgctttatggcggagaccattttgcttcactacaagaggctactgtagTAGATCCGAA`
9. `ttctttaccccttctttTAGATCCGAAacctttggcggccactttctttccagttctttgtacctccatattgtcctcagac`
10. `ctacctatgttaaaacaacatctactaagctagtgctcgtctttctctgatctgacccctaatcactcacaggTAGATCCGAAattcg`

Now that you’ve seen the answer, how would you find it?
Meet Mr Brute Force

- He's often the best starting point when approaching a problem
- He'll also serve as a straw-man when designing new approaches
- Though he's seldom elegant, he gets the job done
- Often, we can't afford to wait for him

For our current problem a brute force solution would consider every k-mer position in all strings and see if they match. Given M sequences of length N, there are:

$$(N-k+1)^M$$

position combinations to consider.

How do you write M nested loops when M is a variable?
A Library of Helper Functions

- There's a tendency to approach this problem with a series of nested for-loops, while the approach is valid, it doesn't generalize. It assumes a specific number of sequences.
- What we need is an iterator that generates all permutations of a sequence.
- This nested-for-loop iterator is called a Cartesian Product over sets.
- Python has a library to accomplish this
Using itertools

itertools: 3 loops over 2 things

In [4]:
```python
import itertools

for number in itertools.product(range(2), repeat=3):
    print(number, sum(2**(len(number)-i-1)*bit for i, bit in enumerate(number)))
```

(0, 0, 0) 0
(0, 0, 1) 1
(0, 1, 0) 2
(0, 1, 1) 3
(1, 0, 0) 4
(1, 0, 1) 5
(1, 1, 0) 6
(1, 1, 1) 7

itertools: 2 loops over 3 things

In [4]:
```python
for number in itertools.product(range(3), repeat=2):
    print(number)
```

(0, 0)
(0, 1)
(0, 2)
(1, 0)
(1, 1)
(1, 2)
(2, 0)
(2, 1)
(2, 2)
Permutations of mixed types

In [14]: for section in itertools.product(['I', 'II', 'III', 'IV'], 'ABC', range(1,3)):
 print(section)

('I', 'A', 1)
('I', 'A', 2)
('I', 'B', 1)
('I', 'B', 2)
('I', 'C', 1)
('I', 'C', 2)
('II', 'A', 1)
('II', 'A', 2)
('II', 'B', 1)
('II', 'B', 2)
('II', 'C', 1)
('II', 'C', 2)
('III', 'A', 1)
('III', 'A', 2)
('III', 'B', 1)
('III', 'B', 2)
('III', 'C', 1)
('III', 'C', 2)
('IV', 'A', 1)
('IV', 'A', 2)
('IV', 'B', 1)
('IV', 'B', 2)
('IV', 'C', 1)
('IV', 'C', 2)
Bruteforce Exact Search

```
In [9]: sequences = [
    'tagtgctttttaggtagatccgaaggaagttatattcaccacagtccgggtcaccagcagggcagggtgacatta',
    'cgccacgctggctcacaggtattcagaccagttgattcagttc',
    'ggattcttctttaggtagatccgaaggaagttatattcaccacagtccgggtcaccagcagggcagggtgacatta',
    'acacagcatcgttcgtttcattaaacaccttttaattatcaccaggtgcctcatgcagcgt',
    'acacagcatcgttcgtttcattaaacaccttttaattatcaccaggtgcctcatgcagcgt',
    'tagtgctttttaggtagatccgaaggaagttatattcaccacagtccgggtcaccagcagggcagggtgacatta',
    'ggttagctttttaggtagatccgaaggaagttatattcaccacagtccgggtcaccagcagggcagggtgacatta',
    'tagtgctttttaggtagatccgaaggaagttatattcaccacagtccgggtcaccagcagggcagggtgacatta',
    'ggttagctttttaggtagatccgaaggaagttatattcaccacagtccgggtcaccagcagggcagggtgacatta',
    'tagtgctttttaggtagatccgaaggaagttatattcaccacagtccgggtcaccagcagggcagggtgacatta',
]

def bruteForce(dna,k):
    """"""Finds a *k*-mer common to all sequences from a
    list of *dna* fragments with the same length"""
    M = len(dna)  # how many sequences
    N = len(dna[0])  # length of sequences
    for offset in itertools.product(range(N-k+1), repeat=M):
        for i in range(1, len(offset)):
            if dna[0][offset[0]:offset[0]+k] != dna[i][offset[i]:offset[i]+k]:
                break
        else:
            return offset, dna[0][offset[0]:offset[0]+k]
```

for... else... that's new!
Now let’s Test and Time it

In [16]:
M = 4
position, motif = bruteForce(sequences[0:M], 10)
print(position, motif, ',
')

for i in range(M):
 p = position[i]
 print(sequences[i][:p]+sequences[i][p:p+10].upper()+sequences[i][p+10:])
print()

%timeit bruteForce(sequences[0:M], 10)
you can try a larger value of M, but be prepared to wait

(17, 47, 18, 33) tagatccgaa
tagttagtcttttttagtgTAGATCCGAAaggaaagtattttcaccagttccgggtaccaccacaggcaggggtgacttaat
cggagctcgcgcctcagttatcgcacggttttagaccaaaacggagttAGATCCGAAactgggttttaatccggggtcttt
gttactttgagctcctggtTAGATCCGAAatataatttctgctgtggtcatacagggagtgcagctgacatatcaggtagggaatcgat
aacatcaggcttttgattaaacaattttgaagcagcTAGATCCGAA tgtgacctgtgatgaacataggaacatgccccgtccccg

6.25 s ± 143 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Approximate Matching

Now let's consider a more realistic motif finding problem, where the binding sites do not need to match exactly.

```
1  tagtggctttttgagtgTAGATCTGAAGggaaagtatttccaccagttcggggtcaccacagggcagggtgacttaat
2  cgccactcgccgcctacagttatcgacagtgttagacaacaacaggtTGGATCCGAAactggagtttaatcgaggtccttt
3  gttactctgtagcgctgtTAGACCCGAAatataattgttggtctcataqcgagctgacatagcagtaggggaatgctgt
4  aacatcaggtctttgattaacatcaatctacagcgaATAATCCGAAattgacctgtatgcaaatatccaacagtgcggctcggg
5  accaccggatatagctgctatatAGGTTCAAAGggtagtactcgtataataatggtctcagcatgtgctcggccacatcaccac
6  TAGATTCCGAAtcgatcgtggtttctctctttggttaacagggggtccagctcttgctgcatgtgcgaacattttgctacc
7  gaaatggttcgtgcgatbtcggccctttctttatcggcgggtgtcAGATCCGAAcgtctcttgaggggtcgtgcgtacat
8  atgtatactagacatattctcaacgcgtcgttattgggcagacattttgctgacctacaagaggtactgtgTAGATCCGTA
9  ttcttaaccctctctttTAGATCCGAAacctgttgccgcaccttctctttcagttctgtaacctccatatttgctaggtac
10  ctacctatgttaaaacacatctactaagctagtcggctttttctgtatgcctgctcaacctacaggTCGATCCGAAattcctg
```

Actually, none of the sequences have an unmodified copy of the original motif.
Profile and Consensus

How to find approximate string matches?

- Align candidate motifs by their start indexes
 \[s = (s_1, s_2, \ldots, s_t) \]

- Construct a "profile matrix" with the frequencies of each nucleotide in columns

- Consensus nucleotide in each position has the highest score in each column

<table>
<thead>
<tr>
<th>Alignment</th>
<th>a G g t a c T t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C c A t a c g t</td>
</tr>
<tr>
<td></td>
<td>a c g t T A g t</td>
</tr>
<tr>
<td></td>
<td>a c g t C c A t</td>
</tr>
<tr>
<td></td>
<td>C c g t a c g G</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Profile</th>
<th>A 3 0 1 0 3 1 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C 2 4 0 0 1 4 0 0</td>
</tr>
<tr>
<td></td>
<td>G 0 1 4 0 0 3 1</td>
</tr>
<tr>
<td></td>
<td>T 0 0 0 5 1 0 1 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consensus</th>
<th>A C G T A C G T</th>
</tr>
</thead>
</table>
Consensus

- One can think of the consensus as an *ancestor* motif, from which mutated motifs emerged.
- The distance between an actual motif and the consensus sequence is generally less than that for any two actual motifs.
- Hamming distance is number of positions that differ between two strings.

\[
\begin{align*}
\text{G A G A C T C A T} \\
\text{X X} \\
\text{T A G A C G C A T}
\end{align*}
\]

A Hamming distance of 2
Consensus Properties

- A consensus string has a minimal hamming distance to all its source strings
Scoring Motifs

- Given $s = (s_1, s_2, \ldots, s_t)$ and DNA

$$Score(s, \text{DNA}) = \sum_{i=1}^{k} \max_{j \in \{A,C,G,T\}} \text{count}(j, i)$$

- So our approach is back to brute force
 - We consider every candidate motif in every string
 - Return the set of indices with the highest score

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Consensus: $a\ c\ g\ t\ a\ c\ g\ t$

Score: $3+4+4+5+3+4+3+4=30$
Let's try again allowing for errors

```python
In [17]: def Score(s, DNA, k):
    
        # compute the consensus SCORE of a given k-mer alignment given
        # offsets into each DNA string. s = list of starting indices.
        # DNA = list of nucleotide strings. k = Target Motif length

        score = 0
        for i in range(k):
            # loop over string positions
            cnt = dict(zip("acgt",(0,0,0,0)))
            for j, sval in enumerate(s):
                base = DNA[j][sval+1]
                cnt[base] += 1
            score += max(cnt.values())
        return score

def BruteForceMotifSearch(dna,k):
    M = len(dna)  # how many sequences
    N = len(dna[0])  # length of sequences
    bestScore = 0
    bestAlignment = []
    for offset in itertools.product(range(N-k+1), repeat=M):
        s = Score(offset,dna,k)
        if (s > bestScore):
            bestAlignment = [p for p in offset]
            bestScore = s
    print(bestAlignment, bestScore)
```
In [13]:
seqApprox = [
 'tagttgcttttgaggtgtagatctgaagggaagtataccccaccagtctcttcctgagggcagtggtgacattaat',
 'cgcgactcggccgcctcacagttatgcacgctttagaccaaaaacggagtttggtatccgaatactcgagtttaatccct',
 'gttacttggagacttggtttagacccgaatatgtagttggtcctagcctgagattcagtagaggggaatgcgt',
 'aaccatcaggctttgattaacaaacttaagcactgaatatccgaatttgaccttgatgacaaatacggaacatctggccgctccgg',
 'acaccggagataaggctttaggttcctttatcggctaaaggtatagctgaatactggtcctcagcctatgtcaatgctctggcacattc',
 'tagattctcatcgatcgtcttttcctctctgtggaatcagagggctccgacctttgtgcgttcctgacatgcgaacttaccc',
 'gaagattctgccgctcagatatcagccggcttccttaaccctgctggccgtccgatatccggaacgctctgctgaaggggtcgtgcgct',
 'atgtatcactagacactctcagctggttttagccgagacccattttttctcactaacaagggctactctgtgtagatcctgta',
 'ttctctacaccccttcttttagatccaaaaacgctcctgtgatcctggtctcttgctaccttttacatttggtctgtgatgc',
 'ctacactatgtaaaaaacattactaaccctgaatctggtccgctttctctctgcacccctaaactacagtggtcgtcagttcgaatttcg']

%timeit Score([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], seqApprox, 10)
%time BruteForceMotifSearch(seqApprox[0:4], 10)

47.4 μs ± 5.52 μs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
[17, 47, 18, 33] 36
CPU times: user 12min 57s, sys: 50.2 ms, total: 12min 57s
Wall time: 12min 57s
Running Time of BruteForceMotifSearch

- Search \((N - k + 1)\) positions in each of \(M\) sequences, by examining \((N - k + 1)^M\) sets of starting positions.
- For each set of starting positions, the scoring function makes \(O(Mk)\) operations, so the complexity is:

\[
Mk(N-k+1)^M = O(MkN^M)
\]

- That means that for \(M = 10, N = 80, k = 10\) we must perform approximately \(10^{21}\) computations.
- Generously assuming \(10^9\) comps/sec it will require only \(10^{12}\) secs

\[
\frac{10^{12}}{(60 \times 60 \times 24 \times 365)} > 30000\text{ years}
\]

- Want to wait?
How conservative is this estimate?

- For the example we just did $M = 4$, $N = 80$, $k = 10$
- So that gives $\approx 4.0 \times 10^9$ operations
- Using our 10^9 operations per second estimate, it should have taken only 4 secs.
- Instead it took closer to 700 secs, which suggests we are getting around 5.85 million operations per second.
- So, in reality it will even take longer!
How can we find Motifs in our lifetime?

- Should we give up on Python and write in C? Assembly Language?
- Will biological insights save us this time?
- Are there other ways to find Motifs?
- Consider that if you knew what motif you were looking for, it would take only
 \[k(N-k+1)M = O(kNM) \]
 to find its indices in each string.
- Is that significantly better?