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An aside... what is an Algorithm?

An algorithm is a sequence of instructions that solves a well-formulated problem.

input

Algorithm:
Complexity
Correctness

output
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Correctness

e Analgorithm is correct only if it produces correct result for every valid input instance
o An algorithm is incorrect answer if it cannot produce a
correct result for one or more input instances,
e Coin change problem
o Input: an amount of money M in cents, and a list of coin denominations [c.,c,, ... ,.c |
o  Output: the smallest number of coins that add to M (may not be unique)
e US coin change problem
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US Coin Change T,

72 cents - Classic reM
< % Algorithm g « /25

r<r—25-q
d<«r/10
r<«r-10-d
n<«r/5

r<r—5n

Two quarters, 22 cents left p<r
29

Can we
generalize

P.
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</ »4; Two dimes, 2 cents left
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Q G Two pennies
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Change Problem

e Input:
o an amount of money M

o an array of denominations c = (c1, c2, ...,

e Output: the smallest number of coins

cd) in order of decreasing value

re—M
n<0
fork<—1tod
M =40 ‘
.= (25,20, 10,5, 1) | B
¢ =(25, 20, 10, 5, ne n+i,

return n

rer-c,xi

k

I
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A "Greedy" change approach

e Key idea: Use as many of the largest available coin denomination so long as
the sum is less than or equal to the change amount

Iny 8] def greedyChange(amount, denominations):
. # Goal is to produce the fewest coins to achieve

# given target "amount"

# Strategy: Give as many of the largest coin

# denomination that is less than amount.

solution = []

for coin in denominations:
i = amount // coin # truncating integer divide
solution.append(1i)
amount -= coin * i

return solution

sl = greedyChange(72, [25,10,5,1])
print(si1, sum(sl))

s2 = greedyChange(40, [25,10,5,1])
print(s2, sum(s2))

s3 = greedyChange(40, [25,20,10,5,1])
print(s3, sum(s3))

[2, 2, 6, 2] 6

[1, 1, 1, 0] 3
(1, 0, 1, 1, 0] 3
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Another Approach?

e Let's bring back brute force

e Test every coin combination (where each denomination is less than 100)
to see if it adds up to our target

e Is there exhaustive search algorithm?

In [8]: def exhaustiveChange(amount, denominations):
: bestN = 100 [0,1,2,3] 25
count = [0 for 1 in range(len(denominations))]
while True: [0'1'2'3'4] 20
for i, coinvalue in enumerate(denominations): [0,"_,9] 10
count[i] += 1
if (count[i]*coinvValue < 100): [00"°;19] 5]
break [0,...,99] 100

count[i] = ©
n = sum(count)

& et 4*5*10*20*100 = 400000
value = sum([count[i]*denominations[i] for i in range(len(denominations))])
if (value == amount):

if (n < bestN):
solution = [count[i] for i in range(len(denominations))]
bestN = n
return solution

%time print(exhaustiveChange(40,[25,20,10,5,1]))
[6, 2, 0, 0, 0]

CPU times: user 688 ms, sys: 0 ns, total: 688 ms
wWall time: 672 ms
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Correct, but costly

e Our algorithm now gets the right answer for every value 1..

e |t must, because it considers every possible answer
(that’s the good thing about brute force)

e Thereis a downside though

Th [16]: %time print(exhaustiveChange(40, [25,10,5,1]))
%time print(exhaustiveChange(40, [25,20,10,5,1]))
%time print(exhaustiveChange(40, [13,11,7,5,3,1]))

[1, 1, 1, 0]

CPU times: user 155 ms, sys: 0 ns, total: 155 ms
wWall time: 149 ms

(6, 2, 0, 0, 0]

CPU times: user 632 ms, sys: 0 ns, total: 632 ms
Wall time: 628 ms

[0/ 3/ 1/ 01 01 0]

CPU times: user 2min 50s, sys: 0 ns, total: 2min 50s
wWall time: 2min 50s
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Other tricks?

A Branch-and-bound algorithm, almost identical to brute force

In [17]: def branchAndBoundChange(amount, denominations):
bestN = amount
count = [0 for i in range(len(denominations))]
while True:
for i, coinValue in enumerate(denominations)
count[i] += 1
if (count[i]*coinValue < amount): # Set upper bound to amount rather than 100
break
count[i] = ©
n = sum(count)
if n == 0:
break
if (n > bestN): # don't compute the amount if there are too many coins
continue
value = sum([count[i]*denominations[i] for i in range(len(denominations))])
if (value == amount):
if (n < bestN):
solution = [count[i] for i in range(len(denominations))]
bestN = n
return solution

%time print(branchAndBoundChange(40, [13,11,7,5,3,1]))
[@I 37 1/ 0I 0I 0]

CPU times: user 317 ms, sys: 0 ns, total: 317 ms
wall time: 299 ms

..Correct, and it works well for many cases, but can be as slow as an exhaustive search for some inputs
(try 99).
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|s there another Approach?

Tabulating Answers

If it is costly to compute the answer for a given
input, then there may be advantages to caching the
result of previous calculations in a table

This trades-off time-complexity for space

How could we fill in the table in the first place?

Run our best correct algorithm

Can the table itself be used to speed up the
process?
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Solutions using a Table i,

e Suppose you are asked to fill-in the unknown table entry for 67¢
e It must differ from a previously known optimal result by at most one coin...
e So what are the possibilities?

o BestChange(67¢) = 25¢ + BestChange(42¢), or Looks like a
o BestChange(67¢) = 20¢ + BestChange(47¢), or 5 St
o BestChange(67¢) = 10¢ + BestChange(57¢), or _’ / That gives
o BestChange(67¢) = 5¢ + BestChange(62¢), or me an ideal
o BestChange(67¢) = 1¢ + BestChange(66¢)
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A Recursive Coin-Change Algorithm

In [23]: def RecursiveChange(M, c):
if (M == 0):
return [0 for i in range(len(c))]
smallestNumberOfCoins = M+1
for i in range(len(c)):
if (M >= c[i]):
thisChange = RecursiveChange(M - c[i], c)
thisChange[i] += 1
if (sum(thisChange) < smallestNumberOfCoins):
bestChange = thisChange
smallestNumber0fCoins = sum(thisChange)
return bestChange

%time print(RecursiveChange(40, [1,3,5,7,11,13]))
[1, 0, 0, 0, O, 3]

CPU times: user 6min 43s, sys: 16 ms, total: 6min 43s
Wall time: 6min 43s

Oops... it got slower. Why?
(Not to mention, it found another “different” correct answer.)
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Recursion Recalculations

e Recursion often results in many redundant calls

e Even after only two levels of recursion 6 different
change values are repeated multiple times

e How can we avoid this repetition?

e Cache precomputed results in a table!
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Change(40) = 25 + Change(15)]
25 + 10 +|Change(5) |
25 + 5 +|Change(10)|
20 + Change(20) |
20 + 20 + Change(0)
20 + 10 +|Change(10)

(>

20 + 5 +|Change(15)
10 +|Change(30)|
10 + 25 +|Change(5)

10 + 20 +|Change(10)

10 + 10 +|{Change(20)

10 + 5 +|Change(25
5 + Change(35)
5 + 25 + Change(15)
5+ 20 + Change(10)
5 + 10 + Change(25
5+ 5 +Change(30)|
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Back to Table Evaluation e,

e When do we fill in the values of our table?
We could solve for change for every value from 1 up to M, thus we'd be gaurenteed to have found
the best change for any value less than M when needed
e Thus, instead of just trying to find the minimal number of coins to change M cents,
we attempt the solve the superficially harder problem of solving for the optimal change
for all values from 1 to M

X i/
/

1¢ =[0,0,0,0,1] 2¢ =[0,0,0,0,2] 3¢ =[0,0,0,0,3] ca MC = [2,2,2,2,2
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Change via Dynamic Programming

In [27]: def DPChange(M, c):
change = [[0 for i1 in range(len(c))]]
for m in range(1,M+1):
bestNumCoins = m+1
for i in range(len(c)):
if (m >= c[i]):
thisChange = [x for x in change[m - c[i]]]
thisChange[i] += 1
if (sum(thisChange) < bestNumCoins):
change[m:m] = [thisChange]
bestNumCoins = sum(thisChange)
return change[M]

%time print(DPChange(40, [1,3,5,7,11,13]))
%time print(DPChange(40, [1,3,5,7,11,13,17]))
%time print(DPChange(40, [1,3,5,7,11,13,17,19]))

[1, o, 0, 0, 0, 3]

CPU times: user 3 ms, sys: 1e+03 ps, total: 4 ms
wWall time: 2.82 ms

[1, 0, 1, 8, 0, 0, 2]

CPU times: user 1e+03 ps, sys: 0 ns, total: 1e+03 ps
wall time: 1.28 ms

[2, 0, 6, ®, 0, 0, 0, 2]

CPU times: user 0 ns, sys: 0 ns, total: 0 ns

wall time: 462 ps

e BruteForceChange() was 0(d¥)
e DPChange()is O(Md)
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A Hybrid Approach: Memoization

e Often we can simply modify a recursive algorithm to “cache” the result of previous invocations

e Flllin table lazily as needed... as each call to progresses from M down to 1

e This “lazy evaluated” form of dynamic programming is often called “Memoization”

In [34]: M change = {} # This is a cache for

def MemoizedChange(M, c):
global change

saving bestChange[M]

if (M 1n change): # Check the cache first

return [v for v in change[M]]
if (len(change) == 0): # Initialize cache
change[0] = [0 for i in range(len(c))]
smallestNumberOfCoins = M+l
for i in range(len(c)):
if (M >= c[i]):
thisChange = MemoizedChange(M - c[i], c)
thisChange[i] += 1
if (sum(thisChange) < smallestNumberOfCoins):
bestChange = [v for v in thisChange]
smallestNumberOfCoins = sum(thisChange)
change[M] = [v for v in bestChange] # Add new M to cache
return bestChange

%time print(MemoizedChange(40, [1,3,5,7,11,13]))
[1, 0, 0, B, 0, 3]
CPU times: user 541 ps, sys: 0 ns, total: 541 ps
Wall time: 477 ps
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Dynamic Programming KN

e Dynamic Programming is a general technique for computing recurrence
relations efficiently by storing partial or intermediate results
e Three keys to constructing a dynamic programming solution:
1. Formulate the answer as a recurrence relation
2. Consider all instances of the recurrence at each step
3. Order evaluations so you will always have precomputed the needed
partial results
e Memoization is an easy way to convert recursive solutions to a DP
e Well see it again, and again
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Next Time
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On to sequence alignment
But first we'll learn how to navigate in Mathattan
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