Problem set #3 is due next Tuesday

Midterm is set for next Thursday

Adventures in Dynamic Programming
An aside... what is an Algorithm?

An algorithm is a sequence of instructions that solves a well-formulated problem.
Correctness

- An algorithm is correct only if it produces correct result for every valid input instance
 - An algorithm is incorrect answer if it cannot produce a correct result for one or more input instances,
- Coin change problem
 - Input: an amount of money M in cents, and a list of coin denominations $[c_1, c_2, \ldots, c_n]$
 - Output: the smallest number of coins that add to M (may not be unique)
- US coin change problem
US Coin Change

72 cents

US Coin Change

Two quarters, 22 cents left

Two dimes, 2 cents left

Two pennies

Classic Algorithm

\[
\begin{align*}
 r &\leftarrow M \\
 q &\leftarrow r / 25 \\
 r &\leftarrow r - 25 \cdot q \\
 d &\leftarrow r / 10 \\
 r &\leftarrow r - 10 \cdot d \\
 n &\leftarrow r / 5 \\
 r &\leftarrow r - 5 \cdot n \\
 p &\leftarrow r
\end{align*}
\]

Can we generalize it?

Is it correct?
Change Problem

- **Input:**
 - an amount of money M
 - an array of denominations $c = (c_1, c_2, \ldots, c_d)$ in order of decreasing value
- **Output:** the smallest number of coins

```
M = 40
n ← 0
for k ← 1 to d
    i_k ← r / c_k
    n ← n + i_k
    r ← r - c_k \times i_k
return n
```

Incorrect algorithm!

The correct answer should be 2.

Is it correct?
A "Greedy" change approach

- Key idea: Use as many of the largest available coin denomination so long as the sum is less than or equal to the change amount

```python
In [3]:
def greedyChange(amount, denominations):
    # Goal is to produce the fewest coins to achieve
    # given target "amount"
    # Strategy: Give as many of the largest coin
    # denomination that is less than amount.
    solution = []
    for coin in denominations:
        i = amount // coin  # truncating integer divide
        solution.append(i)
        amount -= coin * i
    return solution

s1 = greedyChange(72, [25, 10, 5, 1])
print(s1, sum(s1))
s2 = greedyChange(40, [25, 10, 5, 1])
print(s2, sum(s2))
s3 = greedyChange(40, [25, 20, 10, 5, 1])
print(s3, sum(s3))
```

```
[2, 2, 0, 2] 6
[1, 1, 1, 0] 3
[1, 0, 1, 1, 0] 3
```
Another Approach?

- Let's bring back brute force
- Test every coin combination (where each denomination is less than 100) to see if it adds up to our target
- Is there exhaustive search algorithm?

```python
In [8]:
def exhaustiveChange(amount, denominations):
    bestN = 100
    count = [0 for i in range(len(denominations))]
    while True:
        for i, coinValue in enumerate(denominations):
            count[i] += 1
        if (count[i]*coinValue < 100):
            break
        count[i] = 0
        n = sum(count)
        if n == 0:
            break
        value = sum([count[i]*denominations[i] for i in range(len(denominations))])
        if (value == amount):
            if (n < bestN):
                solution = [count[i] for i in range(len(denominations))]
            bestN = n
    return solution

%time print(exhaustiveChange(40,[25,20,10,5,1]))

[0, 2, 0, 0, 0]
CPU times: user 688 ms, sys: 0 ns, total: 688 ms
Wall time: 672 ms
```

\[4 \times 5 \times 10 \times 20 \times 100 = 400000\]
Correct, but costly

- Our algorithm now gets the right answer for every value 1..100
- It must, because it considers every possible answer (that’s the good thing about brute force)
- There is a downside though

<table>
<thead>
<tr>
<th>In [16]:</th>
<th>%time print(exhaustiveChange(40, [25, 10, 5, 1]))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>%time print(exhaustiveChange(40, [25, 10, 5, 1]))</code></td>
</tr>
<tr>
<td>2</td>
<td><code>%time print(exhaustiveChange(40, [25, 20, 10, 5, 1]))</code></td>
</tr>
<tr>
<td>3</td>
<td><code>%time print(exhaustiveChange(40, [13, 11, 7, 5, 3, 1]))</code></td>
</tr>
</tbody>
</table>

```
[1, 1, 1, 0]
CPU times: user 155 ms, sys: 0 ns, total: 155 ms
Wall time: 149 ms
[0, 2, 0, 0, 0]
CPU times: user 632 ms, sys: 0 ns, total: 632 ms
Wall time: 628 ms
[0, 3, 1, 0, 0]
CPU times: user 2min 50s, sys: 0 ns, total: 2min 50s
Wall time: 2min 50s
```
Other tricks?

A Branch-and-bound algorithm, almost identical to brute force

```python
In [17]:
def branchAndBoundChange(amount, denominations):
    
    bestN = amount
    count = [0 for i in range(len(denominations))]
    while True:
        for i, coinValue in enumerate(denominations):
            count[i] += 1
            if (count[i]*coinValue < amount):
                break
            count[i] = 0
        n = sum(count)
        if n == 0:
            break
        if (n > bestN):
            continue
        value = sum([count[i]*denominations[i] for i in range(len(denominations))])
        if (value == amount):
            if (n < bestN):
                solution = [count[i] for i in range(len(denominations))]
            bestN = n
    return solution

%time print(branchAndBoundChange(40, [13,11,7,5,3,1]))

[0, 3, 1, 0, 0, 0]
CPU times: user 317 ms, sys: 0 ns, total: 317 ms
Wall time: 299 ms
```

..Correct, and it works well for many cases, but can be as slow as an exhaustive search for some inputs (try 99).
Is there another Approach?

Tabulating Answers

- If it is costly to compute the answer for a given input, then there may be advantages to caching the result of previous calculations in a table.
- This trades-off time-complexity for space.
- How could we fill in the table in the first place?
- Run our best correct algorithm.
- Can the table itself be used to speed up the process?

```
<table>
<thead>
<tr>
<th>Amt</th>
<th>25</th>
<th>20</th>
<th>10</th>
<th>5</th>
<th>Amt</th>
<th>25</th>
<th>20</th>
<th>10</th>
<th>5</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1c</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>42c</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2c</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>43c</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3c</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>44c</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4c</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>45c</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5c</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>46c</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6c</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>47c</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7c</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>48c</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8c</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>49c</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>9c</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>50c</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10c</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>51c</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11c</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>52c</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
```
Solutions using a Table

- Suppose you are asked to fill-in the unknown table entry for 67¢
- It must differ from a previously known optimal result by at most one coin...
- So what are the possibilities?
 - BestChange(67¢) = 25¢ + BestChange(42¢), or
 - BestChange(67¢) = 20¢ + BestChange(47¢), or
 - BestChange(67¢) = 10¢ + BestChange(57¢), or
 - BestChange(67¢) = 5¢ + BestChange(62¢), or
 - BestChange(67¢) = 1¢ + BestChange(66¢)
A Recursive Coin-Change Algorithm

```
In [23]: def RecursiveChange(M, c):
    if (M == 0):
        return [0 for i in range(len(c))]
    smallestNumberOfCoins = M+1
    for i in range(len(c)):
        if (M >= c[i]):
            thisChange = RecursiveChange(M - c[i], c)
            thisChange[i] += 1
            if (sum(thisChange) < smallestNumberOfCoins):
                bestChange = thisChange
                smallestNumberOfCoins = sum(thisChange)
    return bestChange

%time print(RecursiveChange(40, [1,3,5,7,11,13]))
```

[1, 0, 0, 0, 0, 3]
CPU times: user 6min 43s, sys: 16 ms, total: 6min 43s
Wall time: 6min 43s

Oops... it got slower. Why?
(Not to mention, it found another “different” correct answer.)
Recursion Recalculations

- Recursion often results in many redundant calls
- Even after only two levels of recursion 6 different change values are repeated multiple times
- How can we avoid this repetition?
- Cache precomputed results in a table!

\[
\text{Change}(40) = 25 + \text{Change}(15) \\
25 + 10 + \text{Change}(5) \\
25 + 5 + \text{Change}(10) \\
20 + \text{Change}(20) \\
20 + 20 + \text{Change}(0) \\
20 + 10 + \text{Change}(10) \\
20 + 5 + \text{Change}(15) \\
10 + \text{Change}(30) \\
10 + 25 + \text{Change}(5) \\
10 + 20 + \text{Change}(10) \\
10 + 10 + \text{Change}(20) \\
10 + 5 + \text{Change}(25) \\
5 + \text{Change}(35) \\
5 + 25 + \text{Change}(15) \\
5 + 20 + \text{Change}(10) \\
5 + 10 + \text{Change}(25) \\
5 + 5 + \text{Change}(30)
\]
When do we fill in the values of our table?

We could solve for change for every value from 1 up to M, thus we'd be guaranteed to have found the best change for any value less than M when needed.

Thus, instead of just trying to find the minimal number of coins to change M cents, we attempt to solve the superficially harder problem of solving for the optimal change for all values from 1 to M.
Change via Dynamic Programming

\[\text{BruteForceChange() was } O(d^M) \]
\[\text{DPChange() is } O(Md) \]

```python
In [27]:
def DPChange(M, c):
    change = [[0 for i in range(len(c))]]
    for m in range(1, M+1):
        bestNumCoins = m+1
        for i in range(len(c)):
            if (m >= c[i]):
                thisChange = [x for x in change[m - c[i]]]
                thisChange[i] += 1
                if (sum(thisChange) < bestNumCoins):
                    change[m:m] = [thisChange]
                    bestNumCoins = sum(thisChange)
    return change[M]

%time print(DPChange(40, [1,3,5,7,11,13]))
%time print(DPChange(40, [1,3,5,7,11,13,17]))
%time print(DPChange(40, [1,3,5,7,11,13,17,19]))
```

\[[1, 0, 0, 0, 0, 3] \]
\[CPU times: user 3 ms, sys: 1e+03 \mu s, total: 4 ms \]
\[Wall time: 2.82 ms \]
\[[1, 0, 1, 0, 0, 0, 2] \]
\[CPU times: user 1e+03 \mu s, sys: 0 ns, total: 1e+03 \mu s \]
\[Wall time: 1.28 ms \]
\[[2, 0, 0, 0, 0, 0, 2] \]
\[CPU times: user 0 ns, sys: 0 ns, total: 0 ns \]
\[Wall time: 462 \mu s \]
A Hybrid Approach: Memoization

- Often we can simply modify a recursive algorithm to “cache” the result of previous invocations
- Fill in table lazily as needed... as each call to progresses from M down to 1
- This “lazy evaluated” form of dynamic programming is often called “Memoization”

```python
In [34]: change = {} # This is a cache for saving bestChange[M]

def MemoizedChange(M, c):
    global change
    if (M in change):
        return [v for v in change[M]]  # Check the cache first
    if (len(change) == 0):
        change[0] = [0 for i in range(len(c))]  # Initialize cache
        smallestNumberOfCoins = M+1
        for i in range(len(c)):
            if (M >= c[i]):
                thisChange = MemoizedChange(M - c[i], c)  # ThisChange is a list of all possible change with M - c[i]
                thisChange[i] += 1
                if (sum(thisChange) <= smallestNumberOfCoins):
                    bestChange = [v for v in thisChange]  # Best change with smallestNumberOfCoins
                    smallestNumberOfCoins = sum(thisChange)
            change[M] = [v for v in bestChange]  # Add new M to cache
    return bestChange

%time print(MemoizedChange(40, [1,3,5,7,11,13]))

[1, 0, 0, 0, 0, 3]
CPU times: user 541 µs, sys: 0 ns, total: 541 µs
Wall time: 477 µs
```
Dynamic Programming

- Dynamic Programming is a general technique for computing recurrence relations efficiently by storing partial or intermediate results.
- Three keys to constructing a dynamic programming solution:
 1. Formulate the answer as a recurrence relation
 2. Consider all instances of the recurrence at each step
 3. Order evaluations so you will always have precomputed the needed partial results
- Memoization is an easy way to convert recursive solutions to a DP
- We'll see it again, and again
Next Time

- On to sequence alignment
- But first we'll learn how to navigate in Mathattan