Comp 555 - BioAlgorithms - Spring 2020

BRUTE-FORCE
SOLUTTON:

o(n!)

DYNAMIC
PROGRAMMING
ALGORITHMS:

O (n*2")

SELUNG ON ERAY:

0(1)

STILL WORKING
ON YOUR ROUTE?

T ql

SHUT THE
HEW VR

Adventures in Dynamic Programming

PROBLEM SET #3
IS DVE NEXT
TVESDAY

MIDTERM IS SET
FOR NEXT
THURSDAY



An aside... what is an Algorithm?

An algorithm is a sequence of instructions that solves a well-formulated problem.

input

Algorithm:
Complexity
Correctness

output

Comp 555 - Spring 2020



Correctness

e Analgorithm is correct only if it produces correct result for every valid input instance
o An algorithm is incorrect answer if it cannot produce a
correct result for one or more input instances,
e Coin change problem
o Input: an amount of money M in cents, and a list of coin denominations [c.,c,, ... ,.c |
o  Output: the smallest number of coins that add to M (may not be unique)
e US coin change problem

Comp 555 - Spring 2020




US Coin Change T,

72 cents - Classic reM
< % Algorithm g « /25

r<r—25-q
d<«r/10
r<«r-10-d
n<«r/5

r<r—5n

Two quarters, 22 cents left p<r
29

Can we
generalize

P.
-~

</ »4; Two dimes, 2 cents left

oo
Q G Two pennies

Comp 555 - Spring 2020



Change Problem

e Input:
o an amount of money M

o an array of denominations c = (c1, c2, ...,

e Output: the smallest number of coins

cd) in order of decreasing value

re—M
n<0
fork<—1tod
M =40 ‘
.= (25,20, 10,5, 1) | B
¢ =(25, 20, 10, 5, ne n+i,

return n

rer-c,xi

k

I

Comp 555 - Spring 2020

Incorrect
algorithm!

The correct answer
should be 2.

O

’\



A "Greedy" change approach

e Key idea: Use as many of the largest available coin denomination so long as
the sum is less than or equal to the change amount

Iny 8] def greedyChange(amount, denominations):
. # Goal is to produce the fewest coins to achieve

# given target "amount"

# Strategy: Give as many of the largest coin

# denomination that is less than amount.

solution = []

for coin in denominations:
i = amount // coin # truncating integer divide
solution.append(1i)
amount -= coin * i

return solution

sl = greedyChange(72, [25,10,5,1])
print(si1, sum(sl))

s2 = greedyChange(40, [25,10,5,1])
print(s2, sum(s2))

s3 = greedyChange(40, [25,20,10,5,1])
print(s3, sum(s3))

[2, 2, 6, 2] 6

[1, 1, 1, 0] 3
(1, 0, 1, 1, 0] 3

Comp 555 - Spring 2020



(7 ?ﬂg\

Another Approach?

e Let's bring back brute force

e Test every coin combination (where each denomination is less than 100)
to see if it adds up to our target

e Is there exhaustive search algorithm?

In [8]: def exhaustiveChange(amount, denominations):
: bestN = 100 [0,1,2,3] 25
count = [0 for 1 in range(len(denominations))]
while True: [0'1'2'3'4] 20
for i, coinvalue in enumerate(denominations): [0,"_,9] 10
count[i] += 1
if (count[i]*coinvValue < 100): [00"°;19] 5]
break [0,...,99] 100

count[i] = ©
n = sum(count)

& et 4*5*10*20*100 = 400000
value = sum([count[i]*denominations[i] for i in range(len(denominations))])
if (value == amount):

if (n < bestN):
solution = [count[i] for i in range(len(denominations))]
bestN = n
return solution

%time print(exhaustiveChange(40,[25,20,10,5,1]))
[6, 2, 0, 0, 0]

CPU times: user 688 ms, sys: 0 ns, total: 688 ms
wWall time: 672 ms

Comp 555 - Spring 2020



Correct, but costly

e Our algorithm now gets the right answer for every value 1..

e |t must, because it considers every possible answer
(that’s the good thing about brute force)

e Thereis a downside though

Th [16]: %time print(exhaustiveChange(40, [25,10,5,1]))
%time print(exhaustiveChange(40, [25,20,10,5,1]))
%time print(exhaustiveChange(40, [13,11,7,5,3,1]))

[1, 1, 1, 0]

CPU times: user 155 ms, sys: 0 ns, total: 155 ms
wWall time: 149 ms

(6, 2, 0, 0, 0]

CPU times: user 632 ms, sys: 0 ns, total: 632 ms
Wall time: 628 ms

[0/ 3/ 1/ 01 01 0]

CPU times: user 2min 50s, sys: 0 ns, total: 2min 50s
wWall time: 2min 50s

Comp 555 - Spring 2020

100



(7 -#'1‘('\

Other tricks?

A Branch-and-bound algorithm, almost identical to brute force

In [17]: def branchAndBoundChange(amount, denominations):
bestN = amount
count = [0 for i in range(len(denominations))]
while True:
for i, coinValue in enumerate(denominations)
count[i] += 1
if (count[i]*coinValue < amount): # Set upper bound to amount rather than 100
break
count[i] = ©
n = sum(count)
if n == 0:
break
if (n > bestN): # don't compute the amount if there are too many coins
continue
value = sum([count[i]*denominations[i] for i in range(len(denominations))])
if (value == amount):
if (n < bestN):
solution = [count[i] for i in range(len(denominations))]
bestN = n
return solution

%time print(branchAndBoundChange(40, [13,11,7,5,3,1]))
[@I 37 1/ 0I 0I 0]

CPU times: user 317 ms, sys: 0 ns, total: 317 ms
wall time: 299 ms

..Correct, and it works well for many cases, but can be as slow as an exhaustive search for some inputs
(try 99).

Comp 555 - Spring 2020



|s there another Approach?

Tabulating Answers

If it is costly to compute the answer for a given
input, then there may be advantages to caching the
result of previous calculations in a table

This trades-off time-complexity for space

How could we fill in the table in the first place?

Run our best correct algorithm

Can the table itself be used to speed up the
process?

Comp 555 - Spring 2020

Amt]

25

20

10

AMt

25

10

ic

42¢

2¢

43¢

3¢

44C

4c

45¢

5¢

46¢C

6¢

47¢C

7c

48¢

8¢

49¢

9c

50¢

10¢

51¢

11¢

52¢

(7 -#'1‘('\

10



Solutions using a Table i,

e Suppose you are asked to fill-in the unknown table entry for 67¢
e It must differ from a previously known optimal result by at most one coin...
e So what are the possibilities?

o BestChange(67¢) = 25¢ + BestChange(42¢), or Looks like a
o BestChange(67¢) = 20¢ + BestChange(47¢), or 5 St
o BestChange(67¢) = 10¢ + BestChange(57¢), or _’ / That gives
o BestChange(67¢) = 5¢ + BestChange(62¢), or me an ideal
o BestChange(67¢) = 1¢ + BestChange(66¢)

Comp 555 - Spring 2020 11



A Recursive Coin-Change Algorithm

In [23]: def RecursiveChange(M, c):
if (M == 0):
return [0 for i in range(len(c))]
smallestNumberOfCoins = M+1
for i in range(len(c)):
if (M >= c[i]):
thisChange = RecursiveChange(M - c[i], c)
thisChange[i] += 1
if (sum(thisChange) < smallestNumberOfCoins):
bestChange = thisChange
smallestNumber0fCoins = sum(thisChange)
return bestChange

%time print(RecursiveChange(40, [1,3,5,7,11,13]))
[1, 0, 0, 0, O, 3]

CPU times: user 6min 43s, sys: 16 ms, total: 6min 43s
Wall time: 6min 43s

Oops... it got slower. Why?
(Not to mention, it found another “different” correct answer.)

Comp 555 - Spring 2020 12



Recursion Recalculations

e Recursion often results in many redundant calls

e Even after only two levels of recursion 6 different
change values are repeated multiple times

e How can we avoid this repetition?

e Cache precomputed results in a table!

Comp 555 - Spring 2020

Change(40) = 25 + Change(15)]
25 + 10 +|Change(5) |
25 + 5 +|Change(10)|
20 + Change(20) |
20 + 20 + Change(0)
20 + 10 +|Change(10)

(>

20 + 5 +|Change(15)
10 +|Change(30)|
10 + 25 +|Change(5)

10 + 20 +|Change(10)

10 + 10 +|{Change(20)

10 + 5 +|Change(25
5 + Change(35)
5 + 25 + Change(15)
5+ 20 + Change(10)
5 + 10 + Change(25
5+ 5 +Change(30)|

13



Back to Table Evaluation e,

e When do we fill in the values of our table?
We could solve for change for every value from 1 up to M, thus we'd be gaurenteed to have found
the best change for any value less than M when needed
e Thus, instead of just trying to find the minimal number of coins to change M cents,
we attempt the solve the superficially harder problem of solving for the optimal change
for all values from 1 to M

X i/
/

1¢ =[0,0,0,0,1] 2¢ =[0,0,0,0,2] 3¢ =[0,0,0,0,3] ca MC = [2,2,2,2,2

Comp 555 - Spring 2020 14



Change via Dynamic Programming

In [27]: def DPChange(M, c):
change = [[0 for i1 in range(len(c))]]
for m in range(1,M+1):
bestNumCoins = m+1
for i in range(len(c)):
if (m >= c[i]):
thisChange = [x for x in change[m - c[i]]]
thisChange[i] += 1
if (sum(thisChange) < bestNumCoins):
change[m:m] = [thisChange]
bestNumCoins = sum(thisChange)
return change[M]

%time print(DPChange(40, [1,3,5,7,11,13]))
%time print(DPChange(40, [1,3,5,7,11,13,17]))
%time print(DPChange(40, [1,3,5,7,11,13,17,19]))

[1, o, 0, 0, 0, 3]

CPU times: user 3 ms, sys: 1e+03 ps, total: 4 ms
wWall time: 2.82 ms

[1, 0, 1, 8, 0, 0, 2]

CPU times: user 1e+03 ps, sys: 0 ns, total: 1e+03 ps
wall time: 1.28 ms

[2, 0, 6, ®, 0, 0, 0, 2]

CPU times: user 0 ns, sys: 0 ns, total: 0 ns

wall time: 462 ps

e BruteForceChange() was 0(d¥)
e DPChange()is O(Md)

Comp 555 - Spring 2020

(7 -#'1‘('\

15



A Hybrid Approach: Memoization

e Often we can simply modify a recursive algorithm to “cache” the result of previous invocations

e Flllin table lazily as needed... as each call to progresses from M down to 1

e This “lazy evaluated” form of dynamic programming is often called “Memoization”

In [34]: M change = {} # This is a cache for

def MemoizedChange(M, c):
global change

saving bestChange[M]

if (M 1n change): # Check the cache first

return [v for v in change[M]]
if (len(change) == 0): # Initialize cache
change[0] = [0 for i in range(len(c))]
smallestNumberOfCoins = M+l
for i in range(len(c)):
if (M >= c[i]):
thisChange = MemoizedChange(M - c[i], c)
thisChange[i] += 1
if (sum(thisChange) < smallestNumberOfCoins):
bestChange = [v for v in thisChange]
smallestNumberOfCoins = sum(thisChange)
change[M] = [v for v in bestChange] # Add new M to cache
return bestChange

%time print(MemoizedChange(40, [1,3,5,7,11,13]))
[1, 0, 0, B, 0, 3]
CPU times: user 541 ps, sys: 0 ns, total: 541 ps
Wall time: 477 ps

Comp 555 - Spring 2020

(7 a%\

"

16



Dynamic Programming KN

e Dynamic Programming is a general technique for computing recurrence
relations efficiently by storing partial or intermediate results
e Three keys to constructing a dynamic programming solution:
1. Formulate the answer as a recurrence relation
2. Consider all instances of the recurrence at each step
3. Order evaluations so you will always have precomputed the needed
partial results
e Memoization is an easy way to convert recursive solutions to a DP
e Well see it again, and again

Comp 555 - Spring 2020 17



Next Time

Comp 555 -

On to sequence alignment
But first we'll learn how to navigate in Mathattan

Spring 2020

-

—=

=

** " 7 _'

& '
-~ g
e = —¢
We blame ég ‘
Republicans\ 22 Democrats A S = \
1(. S .

18



