
Comp 555 - BioAlgorithms - Spring 2020
● Problem set #2

is due on

Tuesday and

some problems

take significant

time to execute!

Suffix Arrays and BWTs

Comp 555 - Spring 2020

A tweak to argsort()
● Recall argsort() from last time:

def argsort(input):
 return sorted(range(len(input)), key=input.__getitem__)

B = ["TAGACAT", "AGACAT", "GACAT", "ACAT", "CAT", "AT", "T"]
print(argsort(B))

● If we know that our input is suffixes from a single string
○ the ith suffix starts at index i
○ thus we don't need to extract the suffixes, just use offsets

2

Comp 555 - Spring 2020

Comparing suffixes in place

3

G A G A C A T

0 1 2 3 4 5 6

1 0 3 2 5 4 6

3 1 2 0 5 4 6

3 1 5 4 2 0 6

Comp 555 - Spring 2020

Constructing a Suffix Array

4

The "key" parameter defines a "lightweight"
function called a lambda function, which
when given a value from the given list, the
range in this instance, determines what
should be used in the comparion of the sort,
a substring from "string" in this instance.

Comp 555 - Spring 2020

Searching a Suffix Array
● Searching a sorted list requires O(log(m)) comparisons using binary search
● Each comparision is over n symbols of the pattern
● Thus, searching is O(nlog(m))

5

Comp 555 - Spring 2020

Finding all Occurences
A variant to binary search which finds the last occurence of a pattern rather than the first. Only difference,
uses "<=" instead of "<", but needs to trim string comparison to test for equality.

6

Comp 555 - Spring 2020

Longest repeated substring?
● Given a suffix array, we can compute a helper function, call the Longest Common Prefix, LCP

● What is the longest repeated k-mer?
● How many distinct letters in alphabet?

7

Comp 555 - Spring 2020

Summary to this point
● Where:

○ m is the length of the text to be searched
○ n is the length of the pattern (maximum length if more than 1)
○ p is the number of patterns

 * With large constants

8

Comp 555 - Spring 2020

A rather unknown compression approach
In 1994, two researchers from DEC research labs in Palo Alto, Michael Burrows and David Wheeler, devised a transformation
for text that made it more compressible. Essentially, they devised a invertible permutation of any text that compresses well
if it exhibits redundancy.

Example:

 text = "amanaplanacanalpanama$"
 BWT(text) = "amnnn$lcpmnapaaaaaaala"

● Notice how the transformed text has long runs of repeated characters
● A simple form of compression, called run-length encoding, replaces repeated symbols by a (count, symbol) tuple
● If the count is 1, then just the symbol appears

Thus, the BWT(text) can be represented as:

 Compress(BWT(text)) = am3n$lcpmnap7ala (16 chars instead of 22)

● The savings are even more impressive for longer strings
● Notice, they introduced a special "end-of-text" symbol ($ in our case), which is lexigraphically before any other symbol

9

Comp 555 - Spring 2020

Key Idea behind the BWT
● Sorting Cyclical Suffixes (say that 3-times fast)

 "Cyclical Suffixes" "Sorted Cyclical Suffixes"
 tarheel$ $tarheel
 arheel$t arheel$t
 rheel$ta eel$tarh
 heel$tar el$tarhe
 eel$tarh heel$tar
 el$tarhe l$tarhee
 l$tarhee rheel$ta
 $tarheel tarheel$

● The BWT of "tarheels" is the last column of the sorted cyclical suffixes "ltherea$"
● Notice that the sorted cyclical suffixes have a lot in common with a suffix array.
● The BWT is just the "predecessor symbol of these suffixes", where "$" precedes the first symbol

10

Comp 555 - Spring 2020

BWT in Python
● Straightforward implementation based on the definition (there are faster construction methods)

11

Comp 555 - Spring 2020

BWT from a Suffix Array
● It is even simpler to compute the BWT from a Suffix Array
● Finds each suffix's "predecessor" symbol

12

Comp 555 - Spring 2020

Inverting a BWT
● A property of a transform is that there is no information loss-- they are invertible.

Algorithm: inverseBWT(bwt):
1. Create a table of len(bwt) empty strings
2. repeat length(bwt) times:
3. prepend bwt as the first column of the table
4. sort rows of the table alphabetically
5. return (row of table with bwt's 'EOF' character)

 0 1 2 3 4 5 6 7 8
 l l$ l$t l$ta l$tar l$tarh l$tarhe l$tarhee $tarheel
 t ta tar tarh tarhe tarhee tarheel tarheel$ arheel$t
 h he hee heel heel$ heel$t heel$ta heel$tar eel$tarh
 e ee eel eel$ eel$t eel$ta eel$tar eel$tarh el$tarhe
 r rh rhe rhee rheel rheel$ rheel$t rheel$ta heel$tar
 e el el$ el$t el$ta el$tar el$tarh el$tarhe l$tarhee
 a ar arh arhe arhee arheel arheel$ arheel$t rheel$ta
 $ $t $ta $tar $tarh $tarhe $tarhee $tarheel tarheel$

● What else do you notice about the final table?

13

Comp 555 - Spring 2020

Inverse BWT in Python
● Again, straightforward, but not the most efficient

14

Comp 555 - Spring 2020

BWT Compression
● Uncompressed the BWT(text) is same length

as original text
● But, it has a tendancy to form long runs of

repeated symbols
● Why does it form runs?
● All suffixes of repeated substrings sort

together and share predecessors
● Somewhere further down the BWT there is a

series of suffixes starting with u's that have
o's as predecessors

● Redundancy leads to compression

15

Comp 555 - Spring 2020

What do BWTs have to do with searching strings?
● There is close relationship between BWTs

and Suffix Arrays
● We can construct a suffix array from a BWT

as we saw with InverseBWT(bwt)
● Is there a way to access this “hidden”

implicit suffix array for pattern searching?
● In 2005 two researchers, Ferragina &

Manzini, figured out how
● First, an important property they uncovered

16

Comp 555 - Spring 2020

Last-First (LF) mapping property
● The BWT transforms "banana$" to "annb$aa"
● The predecessor symbols of a suffix array preserve the relative suffix order
● The jth occurrence of a symbol in the BWT corresponds to its jth occurance in the suffix array

 $banana 1st ‘a’ in BWT, 3rd ‘a’ in banana, 1st ‘a’ in suffix array
 a$banan 1st ‘n’ in BWT, 2nd ‘n’ in banana, 1st ‘n’ in suffix array
 ana$ban 2nd ‘n’ in BWT, 1st ‘n’ in banana, 2nd ‘n’ in suffix array
 anana$b 1st ‘b’ in BWT, 1st ‘b’ in banana, 1st ‘b’ in suffix array
 banana$ 1st ‘$’ in BWT, 1st ‘$’ in banana, 1st ‘$’ in suffix array
 na$bana 2nd ‘a’ in BWT, 2nd ‘a’ in banana, 2nd ‘a’ in suffix array
 nana$ba 3rd ‘a’ in BWT, 1st ‘a’ in banana, 3rd ‘a’ in suffix array

● This property allows one two traverse the suffix array indirectly
○ ex: The 1st "a" of the bwt is also the first "a" of the suffix array, and its predecessor

is the 1st "n", whose predecessor is the 2nd "a", whose predecessor is the 2nd "n", and so on
● Meanwhile, the number of character occurences in the BWT matches the suffix array

(recall it is a permutation)

17

Comp 555 - Spring 2020

The FM-index
● The FM-index is another helper data structure like the

LCP array mentioned previously
● It is a 2D array whose size is [|text|+1,|Σ|],

where |Σ| is the alphabet size
● It keeps track of how many of each symbol have been

seen in the BWT prior to its ith symbol
● The last m row is the totals for each symbol. By

accumulating these totals you can determine the BWT
index corresponding to the first of each symbol in the
suffix array (Offset).

● Can be generated by a single scan through the BWT
● Memory overhead O(m|Σ|)

18

Comp 555 - Spring 2020

Constructing the FM-index

19

Comp 555 - Spring 2020

Find a Suffix's Predecessor
● Given an index i in the BWT, find the index in the BWT of the suffix preceding the suffix represented by i
● Suffix 5 is preceded by suffix 2
● Suffix 2 is preceded by suffix 6
● Suffix 6 is preceded by suffix 3
● The predecessor suffix of index i:

 c = BWT[i]
 predec = Offset[c] + FMIndex[i][c]

● Predecessor of index 1

 c = BWT[1] # 'n'
 predec = O['n'] + FMIndex[1]['n'] # 5+0 = 5

● Predecessor of index 5

 c = BWT[5] # 'a'
 predec = O['a'] + FMindex[5]['a'] # 1+1 = 2

● Time to find predecessor: O(1)

20

Comp 555 - Spring 2020

Suffix Recovery
● What is the suffix array entry corresponding to BWT index i?

○ Start at i and repeatedly find predecessors until i is reached again
● To find the original string, just start with i = 0, the '$' index

21

Comp 555 - Spring 2020

Finding Substrings
● Searches are performed in reverse order
● Searches return an interval of the suffix array that starts with the desired substring

○ Finds all occurences of target
○ If there are no occurences it finds an empty interval

● Starts with full BWT range (0, N)
● Narrows the range one symbol at a time
● To find substring "nana"

 # Initialize to full range of suffix array
 lo, hi = 0, len(BWT) # len(BWT) = 7
 # Find occurrences of "a"
 lo = Offset['a'] + FMIndex[lo]['a'] # lo = 1 + 0 = 1
 hi = Offset['a'] + FMIndex[hi]['a'] # hi = 1 + 3 = 4
 # Find occurrences of "na"
 lo = Offset['n'] + FMIndex[lo]['n'] # lo = 5 + 0 = 5
 hi = Offset['n'] + FMIndex[hi]['n'] # hi = 5 + 2 = 7
 # Find occurrences of "ana"
 lo = Offset['a'] + FMIndex[lo]['a'] # lo = 1 + 1 = 2
 hi = Offset['a'] + FMIndex[hi]['a'] # hi = 1 + 3 = 4
 # Find occurrences of "nana"
 lo = Offset['n'] + FMIndex[lo]['n'] # lo = 5 + 1 = 6
 hi = Offset['n'] + FMIndex[hi]['n'] # hi = 5 + 2 = 7

22

Comp 555 - Spring 2020

In Python
One of the simplest, fastest, methods we've seen for searching

23

Comp 555 - Spring 2020

BWT score card

Where:
● m is the length of the text to be searched
● n is the length of the pattern (maximum length if more than 1)
● p is the number of patterns

* With large constants, however
† Usually significantly smaller than m

24

Comp 555 - Spring 2020

BWT Gotchas
● While the BWT itself is small, its FM-index can be large
● A full FM-index requires O(|Σ| m) space
● But it can be sampled with minimal performance impact

○ rather than store the FM-index for all indices store only 1 in F
○ when accessing find the closest smaller instantiated index

and use the BWT to fill in the requested missing values
● Example with F = 3

○ when FMIndex[5]['b'] is accessed
○ retrive FMIndex[3]['b'] = 0
○ scan BWT from [3:5] counting 'b's (1) and adding

them to the count at FMIndex[3]
○ return the count = 1

● In practice F values as large as 1000 have little performance impact
○ Why? BWT is small and tends to stay in cache
○ BWT is compressed so scanning through 1000 characters involves fewer reads

● To have all the capabilities of a Suffix Tree, a BWT needs an LCP array

25

Comp 555 - Spring 2020

Real-World uses of BWTs
BWTs are the dominant representation and method used for
Sequence Alignment

● Sequence-Alignment Problem: Given a collection of
short nucleotide fragments (either DNA or RNA) find
the best approximate alignment for each fragment in
a reference genome

● Bowtie2 (2012) and BWA (2009) are the dominant aligners
● As a preprocess a BWT of the reference genome

is built (≈ 1-3 GB)
● How alignment works:

○ given a read from a sequenced fragment (72-150 base pairs
typically)

○ cut the read into smaller seeds (25-31 base pairs typically)
○ Search for an exact match to each using the BWT
○ Use local alignment (dynamic program) to match the remaining

bases

26

Comp 555 - Spring 2020

Next Time
We go even deeper down the BWT rabbit hole

27

