How do I love thee? Let me count the ways. Suppose there are n ways of loving someone and I can love you in any k of them. Assuming order doesn’t matter, there are simply \(\binom{n}{k} = \frac{n!}{(n-k)!k!} \) ways. If order matters, e.g., if buying you flowers on Monday and taking you to a show on Tuesday differs from taking you to a show on Monday and buying you flowers on Tuesday, then we have \(\binom{n}{k} \cdot n! \), or \(\binom{n}{k} \cdot n! \). But what if I can love you in k ways, then m ways? This scenario requires the multichoose operation:

\[
\binom{n}{k, m} = \frac{n!}{k!(n-k)!m!(n-k-m)!}.
\]
A Recurring Problem

● Finding patterns within sequences

● Variants on this idea
 ○ Finding repeated motifs amongst a set of strings
 ○ What are the most frequent k-mers
 ○ How many times does a specific k-mer appear

● Fundamental problem: *Pattern Matching*
 ○ Find all positions of a particular substring in given sequence?
Pattern Matching

The most fundamental for pattern matching problems, does a pattern, \(p \), appear in a text, \(t \)?
If so, where?

- **Goal:** Find all occurrences of a pattern in a text
- **Input:** Pattern \(p = p_1, p_2, \ldots, p_n \) and text \(t = t_1, t_2, \ldots, t_m \)
- **Output:** All positions \(1 < i < (m - n + 1) \) such that the \(n \)-letter substring of \(t \) starting at \(i \) matches \(p \)

In [2]:
```python
def bruteForcePatternMatching(p, t):
    locations = []
    for i in range(0, len(t) - len(p) + 1):
        if t[i:i+len(p)] == p:
            locations.append(i)
    return locations

print(bruteForcePatternMatching("ssil", "imissmissmississippi"))
```

\[[11, 14] \]
Pattern Matching Performance

- Performance:
 - \(m \) - length of the text \(t \)
 - \(n \) - the length of the pattern \(p \)
 - Search Loop - executed \(O(m) \) times
 - Comparison - \(O(n) \) symbols compared
 - Total cost - \(O(mn) \) per pattern

- In practice, most comparisons will terminate early. Why?

- But worst-case data sets exist:
 - \(p = "AAAT" \)
 - \(t = "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAT" \)
We can do better!

If we preprocess our pattern we can search more efficiently ($O(n)$).

Example: FindPattern("ssi", "imissmissmississippi"):

```
  imissmissmississippi
  1.  s
  2.   s
  3.    s
  4.     SSi
  5.      s
  6.       SSi
  7.         s
  8.          SSI               - match at 11
  9.            SSi             - match at 14
 10.               s
 11.                s
 12.                 s
```

- At steps 4 and 6 after finding the mismatch "i" ≠ "m" we can skip over all positions tested because we know that the suffix "sm" is not a prefix of our pattern "ssi".
- Even works for our worst-case example "AAAAT" in "AAAAAAAAAAAAAAAAAT" by recognizing the shared prefixes ("AAA" in "AAAA").
- How about finding multiple patterns $[p_1, p_2, ..., p_3]$ in t
Keyword Trees

- We can preprocess the set of strings we are seeking to minimize the number of comparisons.
- **Idea:** Combine patterns that share prefixes, to *share* those comparisons.
 - Stores a set of keywords in a rooted labeled tree.
 - Each edge labeled with a letter from an alphabet.
 - All edges leaving a given vertex have distinct labels.
 - Leaf vertices are indicated.
 - Every keyword stored can be spelled on a path from the root to some leaf vertex.
 - Searches are performed by “threading” the target pattern through the tree.
- A *Tree* is a special graph as discussed previously.
 - One connected component.
 - N nodes, $N-1$ edges, No loops.
 - Exactly one path from any.
- A *Trie* is a tree that is related to a sequence.
 - Generally, there is a 1-to-1 correspondence between either nodes or edges of the trie and a symbol of the sequence.
Prefix Trie Match

- **Input:** A text \(t \) and a trie \(P \) of patterns
- **Output:** True if \(t \) leads to a leaf in \(P \); False otherwise

What is output for:

- *apple*
- *band*
- *april*

Performance:

- \(O(m) \) - the length of the text, \(t \)
- Independent of how many strings are in the Keyword Trie
Prefix Trie code

```python
In [5]:

    def path(string, parent):
        if (len(string) > 0):
            if (string[0] in parent):
                child = parent[string[0]]
            else:
                child = {}
                parent[string[0]] = child
                path(string[1:], child)
        else:
            parent['$'] = True

    class PrefixTrie:
        def __init__(self):
            self.root = {}
        def add(self, string):
            """ Add a path from the Trie's root """
            path(string, self.root)
        def match(self, string):
            """ Check if there is a path from the root to a '$' """
            parent = self.root
            for c in string:
                if c not in parent:
                    break
                parent = parent[c]
            return '$' in parent

    T = PrefixTrie()
    T.add("apple")
    T.add("banana")
    T.add("apricot")
    T.add("bandana")
    T.add("orange")
    print(T.root)
    print([v for v in map(T.match, ['apple', 'banana', 'apricot', 'orange', 'band', 'april', 'bananapple'])])
```

```
{'a': {'p': {'p': {'l': {'e': {'$': True}}}}}, 'r': {'i': {'c': {'o': {'t': {'$: True}}}}}}, 'b': {'a': {'n': {'a': {'a': {'$: True}}}}}, 'd': {'a': {'n': {'a': {'$: True}}}}}, 'o': {'r': {'a': {'n': {'g': {'e': {'$: True}}}}}}}
[True, True, True, True, False, False, True]
```
Multiple Pattern Matching

Suppose that we have a long string, t, like a genome, and we want to find if any of the strings in a previously constructed prefix trie, P, appear within it.

- t - the text to search through
- P - the trie of patterns to search for

```python
def multiplePatternMatching(t, P):
    locations = []
    for i in xrange(0, len(t)):
        if PrefixTrieMatch(t[i:], P):
            locations.append(i)
    return locations
```
Multiple Pattern Matching Example

```
multiplePatternMatching("bananapple", P):
  0: PrefixTrieMatching("bananapple", P) = True
  1: PrefixTrieMatching("ananapple", P) = False
  2: PrefixTrieMatching("nanapple", P) = False
  3: PrefixTrieMatching("anapple", P) = False
  4: PrefixTrieMatching("napple", P) = False
  5: PrefixTrieMatching("apple", P) = True
  6: PrefixTrieMatching("pple", P) = False
  7: PrefixTrieMatching("ple", P) = False
  8: PrefixTrieMatching("le", P) = False
  9: PrefixTrieMatching("e", P) = False
```

locations = [0, 5]
Trie Improvements

- Based on our previous speed-up
- We can add failure edges to our Trie
 Add an edge to any prefix from the root that matches a suffix on our failed path
- Aho-Corasick Algorithm

The concept of "threading" one string through another

bapple
bap
apple
Multiple Pattern Matching Performance

- $m = \text{len}(t)$
- $d = \text{max depth of } P$ (longest pattern in P)
- $O(md)$ to find all patterns
- Can be decreased further to $O(m)$ using Aho-Corasick Algorithm
 - Add links for pattern suffixes that match text prefixes
- Pattern matching data structure is query specific

Idea: Rather than building a search data structure for indexing the prefixes of the pattern, why not build one for indexing the suffixes of the text.
Now for a Twist

- What if our list of keywords were simply all suffixes of a *single given string*

 Example: ATCATG
 - TCATG
 - CATG
 - ATG
 - TG
 - G

- The resulting keyword tree:
- **A Suffix Trie**
- How would you find "CAT"
- It is a prefix of one of our suffixes
- If there is a path for our entire pattern, we know which suffix it came from
- Try "AT"
A *compressed* Suffix Trie

- Combine nodes with in and out degree 1
- Make edges of these substrings
- All internal nodes have at least 3 edges
- All leaf nodes are labeled with an index of the suffix's index
Uses for Suffix Trees

- Suffix trees hold all suffixes of a text, T
 - i.e., ATCATG: ATCATG, TCATG, CATG, ATG, TG, G
- Can be built in O(m) time for text of length m
- To find any pattern P in a text:
 - Build suffix tree for text, O(m), m=|T|
 - Thread the pattern through the suffix tree
 - Can find pattern in O(n) time! (n=|P|)
- O(|T|+|P|) time for "Pattern Matching Problem"
 (better than Naïve O(|P||T|)
- Build suffix tree and lookup pattern
- Multiple Pattern Matching in O(|T|+k|P|)
Suffix Tree Overhead

- Input: text of length m
- Computation
 - $O(m)$ to compute a suffix tree
 - Does not require building the suffix trie first
- Memory
 - $O(m)$ - nodes are stored as offsets and lengths
 - Huge hidden constant, best implementations
 - Requires about 20*m bytes
 - 3 GB human genome = 60 GB RAM
Suffix Tree Examples

- What is the string represented in the suffix tree? Find path that leads to "1"
- What letter occurs most frequently? Find edge from the root leads to the most leaves
- How many times does "ATG" appear, and where? Match "ATG" to tree and count the number of leaves from that path
- How long is the longest repeated k-mer? Find longest path leading to two leaves
Suffix Trees: Theory vs. Practice

- In theory, suffix trees are extremely powerful for making a variety of queries concerning a sequence
 - What is the shortest unique substring?
 - How many times does a given string appear in a text?
- Despite the existence of linear-time construction algorithms, and $O(m)$ search times, suffix trees are still rarely used for genome-scale searching
- Large storage overhead
Substring Searching

- Is there some other data structure to gain efficient access to all of the suffixes of a given string with less overhead than a suffix tree?

- Some things we know
 - Searching an unordered list of items with length n generally requires $O(n)$ steps
 - However, if we sort our items first, then we can search using $O(\log(n))$ steps
 - Thus, if we plan to do frequent searches there is some advantage to performing a sort first and amortizing its cost over many searches

- For strings **suffixes** are interesting **items**. Why?

<table>
<thead>
<tr>
<th>Suffixes:</th>
<th>Sorted Suffixes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>panamabanananas</td>
<td>abanananas</td>
</tr>
<tr>
<td>anamabanananas</td>
<td>amabanananas</td>
</tr>
<tr>
<td>namabanananas</td>
<td>anamabanananas</td>
</tr>
<tr>
<td>amabanananas</td>
<td>anas</td>
</tr>
<tr>
<td>mabanananas</td>
<td>as</td>
</tr>
<tr>
<td>abanananas</td>
<td>bananas</td>
</tr>
<tr>
<td>bananas</td>
<td>nanas</td>
</tr>
<tr>
<td>ananas</td>
<td>nas</td>
</tr>
<tr>
<td>nas</td>
<td>as</td>
</tr>
<tr>
<td>as</td>
<td>nas</td>
</tr>
<tr>
<td>s</td>
<td>panamabanananas</td>
</tr>
</tbody>
</table>
Questions you can ask

Is there any use for a list of sorted suffixes?

Sorted Suffixes: abananas
 amabanananas
 anamabanananas
 ananas
 anas
 as
 bananas
 mabanananas
 namabanananas
 nanas
 nas
 panamabanananas
 s

● Does the substring "nana" appear in the orginal string?
● How many times does "ana" appear in the string?
● What is the most/least frequent letter in the orginal string?
● What is the most frequent two-letter substring in the orginal string?
Properties of a sorted “suffix array”

- Size of the sorted list if the given text has a length of \(m \)? \(O(m^2) \)
- Cost of the sort? \(O(m^2 \log(m)) \)
- Not practical for big \(m \)
- There are many ways to sort
 - What is an “in place” sort?
 - What is a “stable” sort?
 - What is an “arg” sort?
Arg Sorting

Consider the list:

\[[72, 27, 45, 36, 18, 54, 9, 63] \]

When sorted it is simply:

\[[9, 18, 27, 36, 45, 54, 63, 72] \]

Its “arg” sort is:

\[[6, 4, 1, 3, 2, 5, 7, 0] \]

- The \textit{ith} element in the arg sort is the \textit{index} of the \textit{ith} element from the original list when sorted.
- Thus, \([A[i] \text{ for } i \text{ in argsort(A)]} == \text{sorted}[A] \]
```python
In [7]:

def argsort(input):
    return sorted(range(len(input)), key=input.__getitem__)

A = [72, 27, 45, 36, 18, 54, 9, 63]
print(argsort(A))
print([A[i] for i in argsort(A)])

print()
B = ['TAGACAT', 'AGACAT', 'GACAT', 'ACAT', 'CAT', 'AT', 'T']
print(argsort(B))
print([B[i] for i in argsort(B)])

[6, 4, 1, 3, 2, 5, 7, 0]
[9, 18, 27, 36, 45, 54, 63, 72]

[3, 1, 5, 4, 2, 6, 0]
['ACAT', 'AGACAT', 'AT', 'CAT', 'GACAT', 'T', 'TAGACAT']
```
Next Time

- We'll see how arg sorting can be used to simplify representing our sorted list of suffixes
- Suffix arrays
- Burrows-Wheeler Transforms
- Applications in sequence alignment