Comp 555 - BioAlgorithms - Spring 2020

_

4 3
DANG! - STILL

NO LIFETIME
ACHIEVEMENT
AWARD!

e Recall from last time that the Brute
Force approach for finding a common
10-mer motif common to 10
sequences of length 80 bases was
going to take up roughly 30,000 years

e Today well consider alternative and
non-obvious approaches for solving
this problem

e \We will trade one old man (us) for
another (an Oracle)

THERE WILL BE A PYTHON/TVPYTER CRASH
COVRSE NEXT TVESDAY NIGHT, TaN 28,
FROM $:00PM-6:30PM. ROOM TBA...

Finding TFBS Motifs in our Lifetime

Recall from last lecture

The following set of 10 sequences have an embedded noisy motif, TAGATCCGAA.

tagtggtcttttgagtgTAGATCTGAAgggaaagtatttccaccagttcggggtcacccagcagggcagggtgacttaat
cgcgactcggcgctcacagttatcgcacgtttagaccaaaacggagtTGGATCCGAAactggagtttaatcggagtcectt
gttacttgtgagcctggtTAGACCCGAAatataattgttggctgcatagcggagctgacatacgagtaggggaaatgegt
aacatcaggctttgattaaacaatttaagcacgTAAATCCGAAttgacctgatgacaatacggaacatgccggctccggg
accaccggataggctgcttatTAGGTCCAAAaggtagtatcgtaataatggctcagccatgtcaatgtgcggcattccac
TAGATTCGAAtcgatcgtgtttctccctectgtgggttaacgaggggteccgaccttgetecgecatgtgecgaacttgtacce
gaaatggttcggtgcgatatcaggccgttctcttaacttggcggtgCAGATCCGAAcgtctctggaggggtcgtgegceta
atgtatactagacattctaacgctcgcttattggcggagaccatttgctccactacaagaggctactgtgTAGATCCGTA
ttcttacacccttcttTAGATCCAAAcctgttggcgccatcttecttttcgagteccttgtaccteccatttgectctgatgac
ctacctatgtaaaacaacatctactaacgtagtccggtctttcctgatctgccctaacctacaggTCGATCCGAAattcg

CQOWwWooNOCUuPWN=-

-_—

Some notes:
1. There are no exact matches
2. The consensus motif gives a good score

Comp 555 - Fall 2020

TAGATCTGAA
TGGATCCGAA
TAGACCCGAA
TAAATCCGAA
TAGGTCCAAA
TAGATTCGAA
CAGATCCGAA
TAGATCCGTA
TAGATCCAAA
TCGATCCGAA
9+9+9+9+9
+8+9+9+8+10 = 89

Consensus Scoring Function

e We developed an 0O(k) consensus scoring function to address noise (inexact matches)
e But, we need to apply it an exponential number, O(NM) of times!
e Here's the scoring function...

In [8]: M def Score(s, DNA, k):
compute the consensus SCORE of a given k-mer
alignment given offsets into each DNA string.
s = list of starting indices, 1-based, 0 means ignore
DNA = list of nucleotide strings
k = Target Motif length
score = 0
for i in range(k):
loop over string positions
cnt = dict(zip("acgt",(0,0,0,0)))
for j, sval in enumerate(s):
loop over DNA strands
base = DNA[j][sval+i]
cnt[base] += 1
score += max(cnt.values())
return score

Comp 555 - Fall 2020

(7 ?ﬂg\

And here's the Score we're looking for...

In [9]: M segApprox = [
'tagtggtcttttgagtgtagatctgaagggaaagtatttccaccagttcggggtcacccagcagggcagggtgacttaat',
'cgcgactcggcgctcacagttatcgcacgtttagaccaaaacggagttggatccgaaactggagtttaatcggagtectt',
'gttacttgtgagcctggttagacccgaaatataattgttggctgcatagcggagctgacatacgagtaggggaaatgegt',
'aacatcaggctttgattaaacaatttaagcacgtaaatccgaattgacctgatgacaatacggaacatgccggetccggg',
'accaccggataggctgcttattaggtccaaaaggtagtatcgtaataatggctcagccatgtcaatgtgcggcattccac',
'tagattcgaatcgatcgtgtttctccctectgtgggttaacgaggggtccgaccttgectecgecatgtgecgaacttgtacee',
'gaaatggttcggtgcgatatcaggccgttctcttaacttggecggtgcagatccgaacgtctctggaggggtegtgegeta',
'atgtatactagacattctaacgctcgcttattggcggagaccatttgctccactacaagaggctactgtgtagatccgta',
'ttcttacacccttctttagatccaaacctgttggcgeccatcttcttttcgagteccttgtacctccatttgetctgatgac',
'ctacctatgtaaaacaacatctactaacgtagtccggtctttcctgatctgccctaacctacaggtcgatccgaaatteg']

In [10]: M print(Score([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], seqgApprox, 10))

89

In [12]: M %timeit Score([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], seqgApprox, 10)

26.2 us + 437 ns per loop (mean + std. dev. of 7 runs, 10000 loops each)

So even at a blazing 40us we'll need many lifetimes to compute the 70'° scores

Comp 555 - Fall 2020

Pruning Trees

e One method for reducing the computational cost of a search algorithm is to prune the space of permutations that
could not possibly lead to a better answer than the current best answer.

e Pruning decisions are based on solutions to subproblems that appear early on and offer no hope

How does this apply to our Motif finding problem?

e Consider any permutation of offsets that begins with the indices [25, 63, 10, 43,].
Just based on the first 4 indices the largest possible score is 17 + (6*10) = 77, which
assumes that all 6 remaining strings match perfectly at all 10 positions.

DNA[O][25:35] a a g g g a a a g t
DNA[1][63:73] g t t t a a t c g g
DNA[2][10:20] a g cc t g g t t a
DNA[3][43:53] t t g a c c t g a t
al[2,1,0,1,1, 2,1, 1, 1, 1]

Profile c[o, 0, 1,1, 1, 1, 0, 1, 0, 0]

g [1, 1, 2,1, 1,1, 1,1, 2, 1]

t[1, 2,1, 1, 1, 0, 2,1, 1, 2]

[2, 2, 2,1, 1, 2, 2, 1, 2, 2] Score = 17

If the best answer so far is 79, there is no need to consider the 708 offset permuations that start with these 4 indices.

Comp 555 - Fall 2020

Search Trees

(7 -#'1‘('\

2

e Our standard method for enumerating permutations can be considered as a traversal of leaf nodes
in a search tree

e Suppose after checking the first few offsets we can determine that any score of children nodes
could not beat the best score seen so far?

Search tree of the Cartesian product
(0,1,2) x (0,1,2) x (0,1,2)

[---]
[01-7-] [1 1-1-] [2’-v_]

[0,0,;] [0,1,] [0,2,-] [1,0,-] 1.1, [1.2,] [2,0,-] [21,] [2.2,-]
AR bbb bE b Phb b bE b

[0,0,0] [0,1,0] [020] [100] [1,1,0] [120] [200] [21,0 [2.20]
001 [0,1,1] [021] [1.01 [1.1,1 [1,.21 [201 [21,1] [221]
002 [012] [022] [1.02 [1,.1,2 [1,22] [202 [212] [222]

Comp 555 - Fall 2020

Branch-and-Bound Motif Search N

e Since each level of the tree goes deeper

into search, discarding a prefix discards

all following branches root
e This saves us from looking at

(N=k+1)M-derth |eqves

e Note our enumeration of tree-branches is S1
depth-first
e Well formulate of trimming algorithm as
a recursive algorithm S2
S3

Comp 555 - Fall 2020

Recursive Exploration of a Search Tree

In [17]: M bestAlignment = []
prunedPaths = 0
def exploreMotifs(DNA, k, path, bestScore):

""" Search for a k-length motif in the list of DNA sequences by exploring
all paths in a search tree. Each call extends path by one. Once the
path reaches the number of DNA strings a score is computed. """

global bestAlignment, prunedPaths
depth = len(path)
M = len(DNA)
if (depth == M): # here we have an index in all M sequences
s = Score(path,DNA, k)
if (s > bestScore):
bestAlignment = [p for p in path]
return s

else:
return bestScore

else:

Let's consider if an optimistic best score can beat the best score so far
if (depth > 1):
OptimisticScore = k*(M-depth) + Score(path,DNA, k)
else:
OptimisticScore = k*M
if (OptimisticScore < bestScore):
prunedPaths = prunedPaths + 1
return bestScore
else:
for s in range(len(DNA[depth])-k+1):
newPath = tuple([i for i in path] + [s])
bestScore = exploreMotifs(DNA, k, newPath, bestScore)
return bestScore

Comp 555 - Fall 2020

Let's try it

In [18]: M def BranchAndBoundMotifSearch(DNA, k):
""" Finds a k-length motif within a list of DNA sequences
global bestAlignment, prunedPaths
bestAlignment = []
prunedPaths = 0
bestScore = 0
bestScore = exploreMotifs(DNA, k, [],bestScore)
print(bestAlignment, bestScore, prunedPaths)

e

%time BranchAndBoundMotifSearch(segApprox[0:6], 10)

[17, 47, 18, 33, 21, 0] 53 8615931
CPU times: user 3min 17s, sys: 0 ns, total: 3min 17s
Wall time: 3min 17s

Recall that last time it took almost 13 mins to search the first 4 sequences.
Here we took nearly % of that to search 6 sequences.

Comp 555 - Fall 2020

(7 ﬁﬂ‘\

Observations i,

e For our problem instance, Branch-and-Bound Motif finding is significantly faster
o It found a motif in the first 6 strings in less time than the Brute Force approach found a
solution in the first 4 strings
o More than 702=5000 times faster
o It did so by trimming more than 8 Million paths
o Trimming added extra calls to Score (no worse than doubling
the worst-case number of calls), but ended up saving even .’
more hopeless calls along longer paths.
o In practice, Branch-and-Bound, significantly improved the
average performance
e Does this improve the worst-case performance from O(kNM)?
o What if all of our motifs were found at the end of each DNA string?
o How do we avoid these worse case data sets?
o Randomize the search-tree tranversal order

Comp 555 - Fall 2020 10

We need a new approach e,

e Enumerating every possible permuation of motif positions is still not getting us the speed we want.
e Let's try another tried-and-tested approach to algorithm design, mixing up the problem

o Suppose that some Oracle could tell us what the motif is

o How long would it take us to find its position in each string?

o We could compute the Hamming Distance from our given motif to the k-mer at every position
of each DNA sequence and keep track of the smallest distance and its position on each
string.

o These positions are our best guess of where the motif can be found on each string

e Let's call this approach scanning-and-scoring to find a given motif.

Comp 555 - Fall 2020 11

Scanning-and-Scoring a Motif

In [30]: M def ScanAndScoreMotif(DNA, motif):
totalDist = @
bestAlignment = []
k = len(motif)
for seq in DNA:
minHammingDist = k+1
for s in range(len(seq)-k+1):
HammingDist = sum([1 for i in range(k) if motif[i] != seq[s+i]])
if (HammingDist < minHammingDist):
bestS = s
minHammingDist = HammingDist
bestAlignment.append(bestS)
totalDist += minHammingDist
return bestAlignment, totalDist

In [31]: M print(ScanAndScoreMotif(seqApprox, "tagatccgaa"))
%timeit ScanAndScoreMotif(segApprox, "tagatccgaa")

([17,:47,.18, 33,:21,.0,:46,.70,.16,.65],.11)
1.09 ms * 16.2 ps per loop (mean * std. dev. of 7 runs, 1000 loops each)

Wow, we can test over 900 motifs per second!

Comp 555 - Fall 2020

12

Scan-and-Score Motif Performance N

e There are M(N-k+1) positions to test the motif,
and each test requires k tests.

So each scan is O(MNk)

e So where where do we get candidate motifs?

e Can we try all of them?
o There are 4'°= 1048576 in our example.
o 1048576 motifs x 1.09 mS = 19 mins
o Not fast, but much less than a lifetime

e This approach is called a Median String Motif Search

e Recall from last Lecture that a string that minimizes
Hamming distance is like finding a middle or median
string that is closer to all instances than the instances
are to each other.

Comp 555 - Fall 2020

d =4
[ClccTADlACE] AlcleTAcAcK
=6 ACGTACACT d =3
/=3 \
AGICITCICACT ATIGTACARIT
d =4

13

Let's do it!

In [37]: M import itertools

def MedianStringMotifSearch(DNA, k):
""" Consider all possible 4**k motifs
bestAlignment = []
minHammingDist = k*len(DNA)
kmer = '’
for pattern in itertools.product('acgt’', repeat=k):
motif = ''.join(pattern)
align, dist = ScanAndScoreMotif(DNA, motif)
if (dist < minHammingDist):
bestAlignment = [p for p in align]
minHammingDist = dist
kmer = motif
return bestAlignment, minHammingDist, kmer

i

%time MedianStringMotifSearch(seqApprox,10)

CPU times: user 18min 40s, sys: 0 ns, total: 18min 40s
Wall time: 18min 40s

Out[37]: ([a7, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa')

The right answer in under 20 mins! Much less than a lifetime.

Comp 555 - Fall 2020

14

Notes on Median String Motif Search e

Comp 555 - Fall 2020

Similarities between finding and alignment with minimal Hamming Distance and maximizing a
Motif's consensus score.
In fact, if instead of counting mismatches as in the code fragment:

HammingDist = sum([1 for i in range(k) if motif[i] !'= seq[s+i]])
we had counted matches
Matches = sum([1 for i in range(k) if motif[i] == seq[s+i]])

and found the maximum(TotalMatches) instead of the min(TotalHammingDistance)
we would be using the same measure as Score().

Thus, we expect MedianStringMotifSearch() to give the same answer as either
BruteForceMotifSearch() or BranchAndBoundMotifSearch().

However, the 4¥ term raises some concerns. If k were instead 20, then we'd have to Scan-and-Score
more than 10'? times. Another not-in-a-lifetime algorithm

We can also apply the Branch-and-Bound approach to the Median string method, but, as before it
would only improve the average case.

15

Other ways to guess the motif?

(7 aﬁ<\

e If we knew that the motif that we are looking for was contained somewhere in
our DNA sequences we could test the (N-k+1)t motifs from our DNA, giving
a O(N?t?) algorithm.

tagtggtcttttgagtgtagatctgaagggaaagtatttccaccagttcggggtcacccagcagggcagggtgacttaat
cgcgactcggegctcacagttatcgcacgtttagaccaaaacggagttggatccgaaactggagtttaatcggagtectt
gttacttgtgagcctggttagacccgaaatataattgttggctgcatagcggagectgacatacgagtaggggaaatgegt
aacatcaggctttgattaaacaatttaagcacgTAGATCCGAAttgacctgatgacaatacggaacatgccggctecggg
accaccggataggctgcttattaggtccaaaaggtagtatcgtaataatggctcagccatgtcaatgtgcggecattccac
tagattcgaatcgatcgtgtttctecctetgtgggttaacgaggggteccgaccttgetegecatgtgecgaacttgtacce
gaaatggttcggtgcgatatcaggecgttctcttaacttggeggtgcagatccgaacgtctetggaggggtegtgegeta
atgtatactagacattctaacgctcgcttattggcggagaccatttgctccactacaagaggctactgtgtagatcegta
ttcttacacccttctttagatccaaacctgttggegecatecttettttegagtecttgtacctecatttgetetgatgac
ctacctatgtaaaacaacatctactaacgtagtccggtctttcctgatctgecctaacctacaggtcgatccgaaatteg

e Unfortunately, as you may recall, our motif does not appear actually appear in

our data.

e Let's not be discouraged and try it anyway

Comp 555 - Fall 2020

16

Let's consider only Motifs seen in the DNA

In [39]: M def ContainedMotifSearch(DNA, k):
""" Consider only motifs from the given DNA sequences
motifSet = set()
for seq in DNA:
for i in range(len(seq)-k+1):
motifSet.add(seq[i:i+k])
print("%d Motifs in our set" % len(motifSet))
bestAlignment = []
minHammingDist = k*1len(DNA)
kmer = "'
for motif in motifSet:
align, dist = ScanAndScoreMotif(DNA, motif)
if (dist < minHammingDist):
bestAlignment = [s for s in align]
minHammingDist = dist
kmer = motif
return bestAlignment, minHammingDist, kmer

%time ContainedMotifSearch(seqApprox,10)

709 Motifs in our set
CPU times: user 771 ms, sys: 0 ns, total: 771 ms
Wall time: 769 ms

out[39]: ([17, 31, 18, 33, 21, 0, 46, 70, 16, 65], 17, 'tagatccaaa')

Not exactly the motif we wanted (off by a'g’), [17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa’,
but it was fast!
Comp 555 - Fall 2020

17

Insights from the consensus score matrix

If we call Score([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], seqApprox, 10)

caMp¥deleas 2020

DNA[O][17:
:41]
:28]
DNA[3][33:
:31]
:10]
DNA[6][46:
:80]
DNA[8][16:
DNA[9][65:

DNA[1][31
DNA[2][18

DNA[4][21
DNA[5][©

DNA[7][70

Consensus

271

43]

56]

26]
751]

+Q O o

(o e e 7 I o o o o o

0O 0099090000900

(= I (= (o Iy (= (= Y (= Iy . (o I (= (o)

00000 0090QDOY OO

tt Attt AO O

OO0 OO0 00

OO0OO0OO0OO0000 9

Qo o oK

0O ~+0 000D OO
000000000000 O

(‘."]

Score = 87
Our motif!

18

Contained-Consensus Motif Search

In [42]: M def Consensus(s, DNA, k):
""" compute the consensus k-Motif of an alignment given offsets into each DNA string.
s = list of starting indices, 1-based, © means ignore, DNA = list of nucleotide strings,
k = Target Motif length """
consensus = "'
for i in range(k):
loop over string positions
cnt = dict(zip("acgt",(0,0,0,0)))
for j, sval in enumerate(s):
loop over DNA strands
base = DNA[j][sval+i]
cnt[base] += 1
consensus += max(cnt.items(), key=lambda tup: tup[1])[0©]
return consensus

def ContainedConsensusMotifSearch(DNA, k):
bestAlignment, minHammingDist, kmer = ContainedMotifSearch(DNA, k)
motif = Consensus(bestAlignment, DNA, k)
newAlignment, HammingDist = ScanAndScoreMotif(DNA, motif)
return newAlignment, HammingDist, motif

%time ContainedConsensusMotifSearch(seqApprox,10)

709 Motifs in our set
CPU times: user 770 ms, sys: O ns, total: 770 ms
wWall time: 767 ms

out[42]: ([17, 47, 18, 33, 21, O, 46, 70, 16, 65], 11, 'tagatccgaa')

That was fast!
Comp 555 - Fall 2020 19

Dad, are we there yet?

e We got the answer that we were looking for, bUt

e How can we be sure it will always give the correct answer?
o Our other methods were exhaustive, they examined every
possibility
o This method considers only a subset of solutions, picks the bes
one in a greedy fashion
o What if there had been ties amoung the candidate motifs?
What if the consensus score (87% matches) had been lower
o Would we, should we, be satisfied?

(@)

e It's one thing to be greedy, and another to be both greedy and biased
o Our method is greedy in that it considers only the best contained
motif, greedy methods are subject to falling into local minimums

o Since consider only subsequences as motifs we introduce bias

e Note that Consensus can generate motifs not seen in our data

Comp 555 - Fall 2020

20

A randomized approach to motif finding e

e One way to avoid bias and local minima is to introduce randomness
e We can generate candidate motifs from our data by treating it as
distribution
o Likely motif candidates from this distribution are those generated
by Consensus
o Consensus strings can be tested by Scan-and-Score and their
alignments lead to new consensus strings
o Eventually, we should converge to some local minimal answer
e To avoid finding a local minimum, we try several random starts, and
search for the best score amongst all these starts.
e A randomized algorithm does not guarantee an optimal solution. Instead

it promises a good/plausible answer on average, and it is not susceptible e
3

to a worse-case data sets as our greedy/biased method was.

Comp 555 - Fall 2020 21

A Randomized Motif Search

In [56]: M import random

def RandomizedMotifSearch(DNA, k):
""" Searches for a k-length motif that appears
in all given DNA sequences. It begins with a
random set of candidate consensus motifs
derived from the data. It refines the motif
until a true consensus emerges."""

Seed with motifs from random alignments

motifSet = set()

for i in range(500):
randomAlignment = [random.randint(©,len(DNA[j])-k) for j in range(len(DNA))]
motif = Consensus(randomAlignment, DNA, k)
motifSet.add(motif)

bestAlignment = []
minHammingDist = k*len(DNA)
kmer = '
testSet = motifSet.copy()
while (len(testSet) > 0):
print(len(motifSet),end=", ')
nextSet = set()
for motif in testSet:
align, dist = ScanAndScoreMotif(DNA, motif)
add new motifs based on these alignments
newMotif = Consensus(align, DNA, k)
if (newMotif not in motifSet):
nextSet.add(newMotif)
if (dist < minHammingDist):
bestAlignment = [s for s in align]
minHammingDist = dist
kmer = motif
testSet = nextSet.copy()
motifSet = motifSet | nextSet

Comp 555 - Fall 2020 return bestAlignment, minHammingDist, kmer

22

Let's try it

In [57]: M %time RandomizedMotifSearch(segApprox,10)

500, 771, 866, 883, 889, 890, CPU times: user 1.03 s, sys: 4.01 ms, total: 1.04 s
Wall time: 1.03 s

Out[57]: ([17, 47, 18, 33, 21, 0O, 46, 70, 16, 65], 11, 'tagatccgaa')

Randomized algorithms need to be run multiple times to insure a stable solution

In [58]: M for i in range(10):
print(RandomizedMotifSearch(seqApprox,10))

499, 774, 861, 876, 878, ([17, 47, 18, 33, 21,
500, 768, 843, 863, 869, ([17, 47, 18, 33, 21,
500, 743, 823, 843, 845, ([17, 47, 18, 33, 21,
500, 756, 832, 844, 845, ([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa')
500, 745, 826, 844, 850, ([17, 47, 18, 33, 21, 46, 70, 16, 65], 11, 'tagatccgaa')
500, 776, 852, 870, 873, 874, ([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa')
500, 762, 857, 878, 880, ([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa')
500, 753, 822, 839, 844, 845, ([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa')
500, 764, 845, 865, 867, 868, ([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa')
500, 749, 825, 839, 841, ([17, 47, 18, 33, 21, O, 46, 70, 16, 65], 11, 'tagatccgaa')

46, 70, 16, 65], 11, 'tagatccgaa')
46, 70, 16, 65], 11, 'tagatccgaa')
46, 70, 16, 65], 11, 'tagatccgaa')

~

~

00900

Comp 555 - Fall 2020

23

Lessons Learned s,

e We can find Motifs in our lifetime
o Practical exhaustive search algorithm for small k, MedianStringMotifSearch()
o Practical fast algorthim RandomizedMotifSearch(DNA k)

e Three algorithm design approaches "Branch-and-Bound®, "Greedy", and "Randomized"
e Reversing the objective, pretending that you know the answer, and validating it

e The power of randomness
o Not susceptable to worse case data
o Avoids local minimums that plague some greedy algorithms

Comp 555 - Fall 2020 24

