There will be no problem set #5

Final exam on Friday May 3

Study session?

Genome Rearrangements - Continued
In search of Approximation Ratios

```python
def GreedyReversalSort(pi):
    for i in range(len(pi)-1):
        j = pi.index(min(pi[i:]UTILITY))
        if (j != i):
            pi = pi[:i]
            + [v for v in reversed(pi[i:j+1])]  
            + pi[j+1:]
    return pi
```

<table>
<thead>
<tr>
<th>A(π)</th>
<th>OPT(π)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 0: 6 1 2 3 4 5</td>
<td>Step 0: 6 1 2 3 4 5</td>
</tr>
<tr>
<td>Step 1: 1 6 2 3 4 5</td>
<td>Step 1: 5 4 3 2 1 6</td>
</tr>
<tr>
<td>Step 2: 1 2 6 3 4 5</td>
<td>Step 2: 1 2 3 4 5 6</td>
</tr>
<tr>
<td>Step 3: 1 2 3 6 4 5</td>
<td></td>
</tr>
<tr>
<td>Step 4: 1 2 3 4 6 5</td>
<td></td>
</tr>
<tr>
<td>Step 5: 1 2 3 4 5 6</td>
<td></td>
</tr>
</tbody>
</table>

approximation ratio?

A(π)? n-1

OPT(π)?

any better greedy algorithms?
New Idea: Adjacencies

- Adjacencies are locally sorted runs.
- Assume a permutation:

\[\Pi = \pi_1, \pi_2, \pi_3, \ldots \pi_{n-1}, \pi_n \]

- A pair of neighboring elements \(\pi_i \) and \(\pi_{i+1} \) are adjacent if:

\[\pi_{i+1} = \pi_i \pm 1 \]

- For example:

\[\Pi = 1, 9, 3, 4, 7, 8, 2, 6, 5 \]

- (3,4) and (7,8) and (6,5) are adjacencies.
Adjacencies and Breakpoints

- **Breakpoints** occur between neighboring non-adjacent elements

\[\Pi = 1, \underline{9}, \underline{3}, 4, \underline{7}, 8, \underline{2}, 6, 5 \]

- There are 5 breakpoints in our permutation between pairs (1,9), (9,3), (4,7), (8,2) and (2,5)
- We define \(b(\Pi) \) as the number of breakpoints in permutation \(\Pi \)
Extending Permutations

- One can place two elements, \(\pi_0 = 0 \) and \(\pi_{n+1} = n+1 \) at the beginning and end of \(\Pi \) respectively.

- An additional breakpoint was created after extending.

- An extended permutation of length \(n \) can have at most \((n+1)\) breakpoints.

- \((n-1)\) between the original elements plus 2 for the extending elements.

\[
\begin{align*}
\Pi = 0 &\quad | &\quad 1 &\quad 9 &\quad | &\quad 3 &\quad 4 &\quad | &\quad 7 &\quad 8 &\quad | &\quad 12 &\quad | &\quad 6 &\quad 5 &\quad | &\quad 10 \\
\end{align*}
\]
How Reversals Effect Breakpoints

- Breakpoints are the targets for sorting by reversals.
- Once they are removed, the permutation is sorted.
- Each "useful" reversal eliminates at least 1, and at most 2 breakpoints.
- Consider the following application of GreedyReversalSort(Extend(\(\Pi\)))

\[
\Pi = 2, 3, 1, 4, 6, 5
\]

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c}
0 & 2 & 3 & 1 & 4 & 6 & 5 & 7 \\
\hline
0 & 1 & 3 & 2 & 4 & 6 & 5 & 7 \\
0 & 1 & 2 & 3 & 4 & 6 & 5 & 7 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\end{array}
\]

\(b(\Pi) = 5\)

\(b(\Pi) = 4\)

\(b(\Pi) = 2\)

\(b(\Pi) = 0\)

\[
\text{required reversals} \geq \frac{b(\pi)}{2}
\]
Sorting-by-Reversals: A second Greedy Algorithm

BreakpointReversalSort(\(\pi\)):

1. while \(b(\pi) > 0\):
2. Among all possible reversals, choose reversal \(\rho\) minimizing \(b(\pi)\)
3. \(\Pi \leftarrow \Pi \cdot \rho(i,j)\)
4. output \(\Pi\)
5. return

The “greedy” concept here is to reduce as many breakpoints as possible at each step.

Does it always terminate?

What if no reversal reduces the number of breakpoints?
Yet Another New Idea: *Strips*

Strip: an interval between two consecutive breakpoints in a permutation

- *Decreasing strip*: strip of elements in decreasing order (e.g. 6 5 and 3 2).
- *Increasing strip*: strip of elements in increasing order (e.g. 7 8)
- A single-element strip can be declared either increasing or decreasing.
- We will choose to declare them as *decreasing* with exception of extension strips (with 0 and n+1)

\[0, 1, 9, 4, 3, 7, 8, 2, 5, 6, 10\]
Reducing the Number of Breakpoints

- Consider $\Pi = 1, 4, 6, 5, 7, 8, 3, 2$

$$
0, 1, \leftrightarrow 4, \leftrightarrow 6, 5, \leftrightarrow 7, 8, \leftrightarrow 3, 2, \leftrightarrow 9
\quad b(p) = 5
$$

If permutation p contains at least one decreasing strip, then there exists a reversal r which decreases the number of breakpoints (i.e. $b(p \cdot r) < b(p)$).

Which reversal?

How can we be sure that we decrease the number of breakpoints?
Things to Consider

- Consider $\Pi = 1,4,6,5,7,8,3,2$

- Choose the decreasing strip with the smallest element k in Π
 - It'll always be the right-most element of that strip

- Find $k-1$ in the permutation
 - It'll always be flanked by a breakpoint

- Reverse the segment between k and $k-1$

$$b(p) = 5$$
Things to Consider

- Consider $\Pi = 1, 4, 6, 5, 7, 8, 3, 2$

- Choose the decreasing strip with the smallest element k in Π
 - It'll always be the right-most element of that strip

- Find $k-1$ in the permutation
 - It'll always be flanked by a breakpoint

- Reverse the segment between k and $k-1$
Things to Consider

- Consider $\Pi = 1, 4, 6, 5, 7, 8, 3, 2$

- Choose the decreasing strip with the smallest element k in Π
 - It'll always be the right-most element of that strip

- Find $k-1$ in the permutation
 - It'll always be flanked by a breakpoint

- Reverse the segment between k and $k-1$
Things to Consider

● Consider $\Pi = 1,4,6,5,7,8,3,2$

$\begin{array}{c}
0, 1, 2, 3, 4, 5, 6, 7, 8, 9 \\
\end{array}$

● Choose the decreasing strip with the smallest element k in Π
 ○ It'll always be the right-most element of that strip

● Find $k-1$ in the permutation
 ○ It'll always be flanked by a breakpoint

● Reverse the segment between k and $k-1$

\[
b(p) = 0
\]
Things to Consider

- Consider $\Pi = 1, 4, 6, 5, 7, 8, 3, 2$

\[0, 1, \leftarrow 4, \leftarrow 6, 5, \leftarrow 7, 8, \leftarrow 3, 2, \rightarrow 9\] \hspace{2cm} b(p) = 5

\[0, 1, 2, 3, \leftarrow 8, 7, \leftarrow 5, 6, \leftarrow 4, \rightarrow 9\] \hspace{2cm} b(p) = 4

\[0, 1, 2, 3, 4, \leftarrow 6, 5, \leftarrow 7, 8, \rightarrow 9\] \hspace{2cm} b(p) = 2

\[0, 1, 2, 3, 4, 5, 6, 7, 8, 9\] \hspace{2cm} b(p) = 0

\[d(\Pi) = 3\]
Potential Gotcha

0, 1, 2, 5, 6, 7, 3, 4, 8, 9 \quad b(p) = 3

- If there is no decreasing strip, there may be no strip-reversal \(\rho \) that reduces the number of breakpoints (i.e. \(b(\Pi \rho(i,j)) \geq b(\Pi) \) for any reversal \(\rho \)).
- However, reversing an increasing strip creates a decreasing strip, and the number of breakpoints remains unchanged.
- Then the number of breakpoints will be reduced in the following steps.
Potential Gotcha

- If there is no decreasing strip, there may be no strip-reversal \(\rho \) that reduces the number of breakpoints (i.e. \(b(\Pi^p(i,j)) \geq b(\Pi) \) for any reversal \(\rho \)).
- However, reversing an increasing strip creates a decreasing strip, and the number of breakpoints remains unchanged.
- Then the number of breakpoints will be reduced in the following steps.

\[0, 1, 2, 5, 6, 7, 3, 4, 8, 9 \]

\[b(p) = 3 \]

\[0, 1, 2, 7, 6, 5, 3, 4, 8, 9 \]

\[b(p) = 3 \]
Putting it all together

1. With each reversal, one can remove at most 2 breakpoints
2. If there is any *decreasing* strip there exists a reversal that will remove at least one breakpoint
3. If breakpoints remain and there is no *decreasing* strip one can be created by reserving *any* remaining strip

\[
\begin{align*}
0,1,2,\ |\ &5,6,7,\ |\ 3,4,\ |\ 8,9 \\
\text{\textbf{b(p) = 3}} & \quad \rho(3,5) \\
0,1,2,\ |\ &7,6,5,\ |\ 3,4,\ |\ 8,9 \\
\text{\textbf{b(p) = 3}} & \quad \rho(6,7) \\
0,1,2,\ |\ &7,6,5,4,3,\ |\ 8,9 \\
\text{\textbf{b(p) = 2}} & \quad \rho(3,7) \\
0,1,2,3,4,5,6,7,8,9 \\
\text{\textbf{b(p) = 0}} & \quad \text{Done!}
\end{align*}
\]

An optimal algorithm would remove 2 breakpoints at every step. The last reversal always removes 2 breakpoints, thus if the number of breakpoints is odd, even the optimal algorithm must make at least one reversal that removes only 1 breakpoint.
An Improved Breakpoint Reversal Sort

ImprovedBreakpointReversalSort(π)

1. while \(b(\pi) > 0 \)
2. \quad \text{if } \pi \text{ has a decreasing strip}
3. \quad \text{Among all possible reversals, choose reversal } \rho \text{ that minimizes } b(\pi \cdot \rho)
4. \quad \text{else}
5. \quad \text{Choose a reversal } \rho \text{ that flips an increasing strip in } \pi
6. \quad \pi \leftarrow \pi \cdot \rho
7. output \(\pi \)
8. return
Breakpoints and Strips

```python
In [11]:

def hasBreakpoints(seq):
    """ returns True if sequences is not strictly increasing by 1 """
    for i in range(1, len(seq)):
        if (seq[i] != seq[i-1] + 1):
            return True
    return False

def getStrips(seq):
    """ find contained intervals where sequence is ordered, and return intervals 
    in as lists, increasing and decreasing. Single elements are considered 
    decreasing. "Contained" excludes the first and last interval. """
    deltas = [seq[i+1] - seq[i] for i in range(len(seq)-1)]
    increasing = list()
    decreasing = list()
    start = 0
    for i, diff in enumerate(deltas):
        if (abs(diff) == 1) and (diff == deltas[start]):
            continue
        if (start > 0):
            if deltas[start] == 1:
                increasing.append((start, i+1))
                start = None
            else:
                decreasing.append((start, i+1))
    return increasing, decreasing
```

Handle Reversals

In [15]:

```python
def pickReversal(seq, strips):
    """ Test each decreasing interval to see if it leads to a reversal that
    removes two breakpoints, otherwise, return a reversal that removes only one """
    for i, j in strips:
        k = seq.index(seq[j-1]-1)
        if (seq[k+1] + 1 == seq[j]):
            # removes 2 breakpoints
            return 2, (min(k+1, j), max(k+1, j))
    # In the worst case we remove only one, but avoid the length "1" strips
    for i, j in strips:
        k = seq.index(seq[j-1]-1)
        if (j - i > 1):
            break
    return 1, (min(k+1, j), max(k+1, j))

def doReversal(seq, reversal):
    i, j = reversal
    return seq[:i] + [element for element in reversed(seq[i:j])] + seq[j:]
```

Let's do it!

```python
In [13]:
def improvedBreakpointReversalSort(seq, verbose=True):
    seq = [0] + seq + [max(seq)+1]  # Extend sequence
    N = 0
    while hasBreakpoints(seq):
        increasing, decreasing = getStrips(seq)
        if len(decreasing) > 0:  # pick a reversal that removes a decreasing strip
            removed, reversal = pickReversal(seq, decreasing)
        else:
            removed, reversal = 0, increasing[0]  # No breakpoints can be removed
        if verbose:
            print("Strips:", increasing, decreasing)
            print("%s %s %s" % (removed, seq, reversal))
            input("Press Enter:")
        seq = doReversal(seq, reversal)
        N += 1
        if verbose:
            print(seq, "Sorted")
    return N

# Also try: [1,3,4,7,8,2,6,5]
print(improvedBreakpointReversalSort([3,4,1,2,5,6,7,10,9,8], verbose=True))
```

Strips: [(1, 3), (3, 5), (5, 8)] [(8, 11)]
2: [0, 3, 4, 1, 2, 5, 6, 7, 10, 9, 8, 11] rho(8, 11)
Press Enter:
Strips: [(1, 3), (3, 5)] []
0: [0, 3, 4, 1, 2, 5, 6, 7, 8, 9, 10, 11] rho(1, 3)
Press Enter:
Strips: [(3, 5)] [(1, 3)]
1: [0, 4, 3, 1, 2, 5, 6, 7, 8, 9, 10, 11] rho(3, 5)
Press Enter:
Strips: [] [(1, 3)]
2: [0, 4, 3, 2, 1, 5, 6, 7, 8, 9, 10, 11] rho(1, 5)
Press Enter:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] Sorted
Performance

• *ImprovedBreakPointReversalSort* is a greedy algorithm with a performance guarantee of no worse than 4 compared to an optimal algorithm
 ○ It eliminates at least one breakpoint in every two steps (flip an increasing then remove 1)
 ○ That's at most: $2b(\Pi)$ steps
 ○ An optimal algorithm could *at most* remove 2 breakpoints in every step, thus requiring $b(\Pi)/2$ steps
 ○ The approximation ratio is:

 \[
 \frac{A(\Pi)}{OPT(\Pi)} = \frac{2b(\Pi)}{b(\Pi)/2} = 4
 \]

• But there is a solution with far fewer flips
A Better Approximation Ratio

- If there is a decreasing strip, the next reversal reduces $b(\pi)$ by at least one.
- The only bad case is when there is no decreasing strip. Then we do a reversal that does not reduce $b(\pi)$.
- If we always choose a reversal reducing $b(\pi)$ and, at the same time, select a permutation such that the result has at least one decreasing strip, the bad case would never occur.
- If all possible reversals that reduce $b(\pi)$ create a permutation without decreasing strips, then there exists a reversal that reduces $b(\pi)$ by 2 (Proof not given)!
- When the algorithm creates a permutation without a decreasing strip, the previous reversal must have reduced $b(\pi)$ by two.
- At most $b(\pi)$ reversals are needed.
- The improved Approximation ratio:

$$\frac{A_{new}(\Pi)}{OPT(\Pi)} = \frac{b(\Pi)}{\frac{b(\Pi)}{2}} = 2$$
Comparing Greedy Algorithms

SimpleReversalSort
- Attempts to extend the prefix(π) at each step
- Approximation ratio $(n-1)/(b(\Pi)/2)$ can be large

ImprovedBreakpointReversalSort
- Attempts to reduce the number of breakpoints at each step
- Approximation ratio $b(\Pi)/(b(\Pi)/2) = 2x$
It’s Over

- Final Next Friday, 5/3 (8:00am - 11:00am)
 This room: SN011
 Open book, open notes,
 ~15 questions, designed to take 120 mins
 you will have the entire 180 mins.
 ⅔ material since midterm
 ⅓ material before midterm

- Study session? Tuesday Night 4/30?

- Need to resolve all outstanding grading issues