
Comp 555 - BioAlgorithms - Spring 2019

Divide and Conquer Algorithms

● Problem Set #3 is due tonight

● Problem Set #4 is posted

Comp 555 - Fall 2019

The Essence of Divide and Conquer
● Divide problem into sub-problems
● Conquer by solving sub-problems recursively.

○ If the sub-problems are small enough, solve them in brute force fashion
● Combine the solutions of sub-problems into a solution of the original problem

○ This is the tricky part

2

Comp 555 - Fall 2019

Divide and Conquer Applied to Sorting
Problem
● Given an unsorted array of items

● Reorder them such that they are in a non-decreasing order

3

Comp 555 - Fall 2019

Merge Sort
Step 1. The Divide Phase

log2(n) divisions to split an array of size n into single elements

4

Comp 555 - Fall 2019

Merge Sort
Merging

● 2 arrays of size 1 can be easily merged to form a sorted array of size 2

● Move the smaller first value of the two arrays to the next slot in the merged array. Repeat.
● 2 sorted arrays of size p and q can be merged in O(p+q) time to form a sorted array of size p+q

5

Comp 555 - Fall 2019

Merge Sort
Step 2. Conquer Phase

log2(n) iterations, each iteration takes
O(n) time, for a total time O(n log2(n))

6

Comp 555 - Fall 2019

Now back to Biology
All algorithms for aligning a pair of sequences thus far have required quadratic memory

The tables used by the dynamic programming method

● Space complexity for computing alignment path for sequences of length n and m is O(nm)
● We kept a table of all scores and arrival directions in memory to reconstruct the final best path

(backtracking)

7

Comp 555 - Fall 2019

Computing Alignments with Linear Memory

● If appropriately ordered, the space needed to compute just the score can be reduced to O(n)
● For example, we only need the previous column to calculate the current column, and we can throw

away that previous column once we’re done using it

8

Comp 555 - Fall 2019

Recycling Columns
Only two columns of scores are needed at any given time

9

Comp 555 - Fall 2019

An Aside
Suppose that we reverse the source and destination of our Manhattan Tour

● Does the path with the most attractions change?

10

Comp 555 - Fall 2019

More Aside
Now suppose that we made two tours

● One from the source towards the destination
● A second from the destination of towards the source
● And we stop both tours at the middle column

● Can we combine these two separate solutions to find the overall best score?
11

Comp 555 - Fall 2019

A Divide & Conquer Alignment Approach

● We want to calculate the longest path from (0,0) to (n,m) that passes through (i,m/2)
where i ranges from 0 to n and represents the i-th row

● Define Score(i) as the score of the path from (0,0) to (n,m) that passes through vertex (i, m/2)

12

Comp 555 - Fall 2019

Finding the Midline
Define (mid,m/2) as the vertex where the best score crosses the middle column.

● How hard is the problem compared to the original DP approach?
● What does it lack?

13

Comp 555 - Fall 2019

We know the Best Score
How do we find the best path?

● We actually know one vertex on our path, (m/2, mid).
● How do we find more?

● Hint: Knowing mid actually constrains where the paths can go

14

Comp 555 - Fall 2019

A Mid's Mid
We can now solve for the paths from (0,0) to (m/2, mid) and (m/2, mid) to (m,n)

15

Comp 555 - Fall 2019

And Mid-Mid's Mids (recursively)
And repeat this process until the path is from (i,j) to (i,j)

16

Comp 555 - Fall 2019

Algorithm's Performance
● On the first level, the algorithm fills every entry in the matrix, thus it does O(nm) work

17

Comp 555 - Fall 2019

Work done on a second pass

● On second level, the algorithm fills half the entries in the matrix, thus it does O(nm)/2 work

18

Comp 555 - Fall 2019

Work done on an Alternate second pass
● This is true regardless of what mid is

19

Comp 555 - Fall 2019

Work done on a third pass
● On the third pass, the algorithm fills a quarter of the entries in the matrix, thus it does O(nm)/4 work

20

Comp 555 - Fall 2019

Sum of a Geometric Series

● Time complexity is still O(mn). Actually, we expect it to take about twice as long as the approach
using O(mn) space

21

Comp 555 - Fall 2019

Can We Do Even Better?

● Align in Subquadratic Time?
● Dynamic Programming takes O(nm) for global alignment, which is quadratic assuming n ≈ m
● Yes, using the Four-Russians Speedup

22

Comp 555 - Fall 2019

Partitioning the Alignment Grid
Into smaller blocks

23

Comp 555 - Fall 2019

Block Logic
● How does a block relate to a correct alignment?

○ the alignment path passes through block
○ the path does not use the block

● The alignment passes through O(n/t) total blocks
● Paths enter from the top or left and exit from the

right or bottom
● If we know the best score at the boundaries,

perhaps we can peice together a solution as we
did before.

24

Comp 555 - Fall 2019

Recall our Bag of DP Tricks
● A key insight of dynamic programming was to reuse repeated computations by storing them in a tableau
● Are there any repeated computations in Block Alignments?
● Let’s check out some numbers…

○ Lets assume n = m = 4000 and t = 4
○ n/t = 1000, so there are 1,000,000 blocks
○ How many possible many blocks are there?

■ Assume we are aligning DNA with DNA, so there sequences are over an alphabet of {A,C,G,T}
■ Possible sequences are 4t = 44 = 256,
■ Possible alignments are 4t x 4t = 65536

● There are fewer possible alignments than blocks, thus we must be frequently revisiting block alignments!

● max(max(u-1,v+1,w-1)-1,w-1,x-1) → max(u-2,v,w-2,w-1,x-1) → max(u-2,v,w-1,x-1)
● max(t-1,u-1,max(u-1,v+1,w-1)-1) → max(t-1,u-1,u-2,v,w-2) → max(t-1,u-1,v,w-2)
● All functions are maxs of the 7 block inputs (r,s,t,u,v,w,x,y,z), which can be precomputed.

25

Comp 555 - Fall 2019

Next Time
HIdden Markov Models

26

