Comp 555 - BioAlgorithms - Spring 2018 ™

o PROBLEM SET #2 IS DVE NEXT TUESDAY
o MIDTERM IS MARCH 7, ONE WEEK FROM TODAY

e From last time we learned that we can't always
use DNA to resolve peptide/protein sequences
e What else can we do?
o Extract and purify a pure sample of the
peptide/protein
o Trytoresolve the peptide sequence by
analyzing this sample
e Today's approach
o Randomly fracture the peptide
o Assemble an answer from the peices

Determining a Peptide's Sequence

Molecular Weights are the Puzzle Peices

VaKelL «FaPaWaeaFaN=Q=Y
99

128 113 147 97 186 147 114 128 163

VaKelLeFa«aPaWeFaN=Q=Y
99

128 113 147 97 186 147 114 128

163
1322 known molecular weight
W= F F e N=e Q=Y
V-K L = F P =W 186 147 Q=Y 147 114 128 163
NeQ«=Y 99 128 T 5 97 186 128 163
114 128 163

Le FaP=W
FanN - L BN R A
k. | =-.-. L, F =P =
99

s F =P [a m 163 - 13 147 97
128 113
K
- [Ne F =FE M. K =« L V
1(2% 1!3 F aPaW 113 147 a7 %9 128 113 128
147 q7 186
Comp 555 - Fall 2019 FePaWaF N

VeK WaeFaeaN=Q=Y
147 97 186 147 114 99

128 186 147 114 128 163

186

A

?

.?

Structure of a Peptide Chain

Peptides are chains of amino acids that are joined by peptide bonds
These bonds reduce the weight of each amino acid by one H,0 molecule
The result is called a residue

A Mass Spectrograph can precisely measure the molecular weight

(and charge and abundance) of any peptide chain

Since the molecular weight of each of the possible 20 residues is known
precisely, one can ask the question, which combination of residues would
give a particular weight?

The problem is ambiguous for the entire molecule

Consider all permulations of 'PIT"

O

'PIT', 'PTI', 'ITP', 'IPT', 'TPI', and 'TIP' all weigh the same

o

But they differ in their 2-peptide fragments:

'"PIT' breaks into 'PI'’
while 'PTI' breaks into

and 'IT',
'"PT' and 'TI'

Comp 555 - Fall 2019

a3, Q"* aa,
” R A, H R
‘4 e T
H=N~-C~C =N ~-C ~C N=C=C=0H
Ll Py)i "
H O H)

An Simplified Peptide Weight table R

e The actual molecular weight of an amino acid is a real number.
This acounts for the relative abundances of atomic isotopes
e Today, we will use a simplified version that assumes only integer molecular weights

Example:
Molecular weight of Glycine Amino Acid
W(C,H.NO,) = 12x2 + 5x1 + 14 + 16x2 = 75
Molecular weight of Glycine Residue (Minus the H, 0 lost forming the peptide bond)
W(C,H,NO,-H,0) = 57

e We can repeat this for all 20 Amino Acids to get a integer molecular weight table,
which | name Daltons

Comp 555 - Fall 2019

Table Definitions

In [1]: AminoAcid = {

YAl YAlanined, 'C!: ‘Cysteine!, "D': 'Aspartic acid®, ‘El:ij !'Glutamicacid",
'F': 'Phenylalanine', 'G': 'Glycine', 'H': 'Histidine', 'I': 'Isoleucine',
'K': 'Lysine', 'L': 'Leucine', 'M': 'Methionine', 'N': 'Asparagine',

'P': 'Proline', 'Q': 'Glutamine', 'R': 'Arginine', 'S': 'Serine',

'T': 'Theronine', 'V': 'valine', 'W': 'Tryptophan', 'Y': 'Tyrosine',

LR STOPS

}

AminoAbbrv = {
YAYE YAlLat, Gt teyst, DY YAspt, YEl: 'Glu®,
'F': 'Phe', 'G': 'Gly', 'H': 'His', 'I': 'Ile’,
'K': 'Lys', 'L': 'Leu', 'M': 'Met', 'N': 'Asn’,
'‘P': 'Pro', 'Q': 'Gln', 'R': 'Arg', 'S': 'Ser',
ST S AV R A R SR =B T R L Y B Ty
l*l: ISTPI

}

Here's a new dictionary!

Daltons = {
UALES 74 G - B98Nt B i5E AU E 1l 0 o F
CE a7 Gl 57 Ui S a7 ST 1
LiGE S8 SRRV - A M B 3 R N - 4
LR g R QL i8] 2.8 BRUR I S 568 S IR G 7
R ded, Ve go w486 Uyl 163

In [4]: averageMW = sum(Daltons.values())/20.0
typicallLen = 1322/int(averageMw)
print(averageMw, typicallen, 20**typicallen)

118.75 11.203389830508474 376657155762813.56

Comp 555 - Fall 2019

Some Issues with our Table

We can't distinguish between Leucine (L) and Isoleucine (I).

They both weight 113d
Nor can we distinguish Lysine (K) and Glutamine (Q),
which weigh 128d
For long peptide chains >50, our errors can build up
In reality, peptides can loose or gain one or
more small molecules from their side chains
and fractured peptide bonds
o Gain Hydrogen ions (H, +1 Dalton)
o Lose Water (H20, -18 Daltons)
o Lose Ammonia (NH3, -17 Daltons)
This leads to measurements that vary around
the ideal sums we assume
Regardless of these caveats, let's keep going

Comp 555 - Fall 2019

bastard theoretical physicists
How do you sleep at night?

e
4
.

The total molecular weight of our target

In [5]: TyrocidineBl1l = "VKLFPWFNQY"

The weight of Tyrocidine B1
print(sum([Daltons[res] for res in TyrocidineB1])

1322

Generally, we will assume that the peptide's total molecular weight is known
We will use it as a terminating condition for many of our algorithms that attempt to reconstruct the

peptide sequence from a measured set of weights

Comp 555 - Fall 2019

What weights should we expect? o,

We will make the optimistic assumption that we will fracture our given petide chain into all of its
constituent parts
For a 10 peptide chain

10 single peptides 9, 2-peptide chains 8, 3-peptide chains
7, 4-peptide chains 6, 5-peptide chains 5, 6-peptide chains
4, 7-peptide chains 3, 8-peptide chains 2, 9-peptide chains
1, 10-peptide chain

This gives an upper bound of (%)) = 58nolecular weights

In reality both the peptide chains and their weights may not be unique
The collection of all possible sub-peptide molecular weights from a peptide is called the peptide's
Theoretical Spectrum

Comp 555 - Fall 2019

7754ﬂ§\
|

Code for computing a Theoretical Spectrum

In [7]: def TheoreticalSpectrum(peptide):

Generate every possible fragment of a peptide

spectrum = set()

for fragLength in range(1, len(peptide)+1):

for start in range(0, len(peptide)-fragLength+1):

seq = peptide[start:start+fragLength]
spectrum.add(sum([Daltons[res] for res in seq]))

return sorted(spectrum)

print(TyrocidineB1)

spectrum = TheoreticalSpectrum(TyrocidineB1)
print(len(spectrum))

print(spectrum)

VKLFPWFNQY
51

[97, 99, 113, 114, 128, 147, 163, 186, 227, 241, 242, 244, 260, 261, 283, 291, 333, 340, 357, 388, 389, 405, 430, 44
7, 485, 487, 543, 544, 552, 575, 577, 584, 671, 672, 690, 691, 738, 770, 804, 818, 819, 835, 917, 932, 982, 1031, 106
0, 1095, 1159, 1223, 1322]

e Notice there are distinct 51 weights, how many would you expect?

Comp 555 - Fall 2019

Fragments and their Spectrums

In [11]: peptide = Tyro
fragList = []

cidineB1

for fragLength in range(1,len(peptide)+1):

for start in range(0,len(peptide)-fragLength+1):

seq = peptide[start:start+fraglLength]

fragList.append((sum([Daltons[res] for res in seq]),

print(peptide)
print(len(frag
N =20
lastWeight = 0
for weight, fr
print("%12
N += 1
if (N %
print(
lastWeight

VKLFPWFNQY
55

P:
Q:
VK:
FN:
LFP:
PWF:
PWFN :
KLFPW:
VKLFPW:
VKLFPWF :
KLFPWFNQ:

Comp 555 - Fall 2019

List))

ag in sorted(fragList):

s: %4d%s" % (frag, weight,

== 0):
)

= weight

97
128*
227
261
357
430*
544
671
770
917

1060

V:

F:

KL:

Pw:

KLF:
WFN:
FNQY:
PWFNQ:
LFPWFN :
KLFPWFN :
LFPWFNQY:

99
147
241
283
388
447
552
672
804
932

1095

"if (weight

L:

F:

NQ:

Qy:

FNQ:
KLFP:
WFNQ:
LFPWF:
KLFPWF:
LFPWFNQ:
VKLFPWFNQ:

113
147*
242
291
389
485
575
690
818
932*
1159

seq))

N:

Y

EP:

WF:

NQY:
VKLF:
FPWF :
FPWFN:
FPWFNQ:
FPWFNQY :
KLFPWFNQY :

114
163
244
333
405
487
577
691
819
982
1223

lastWeight) else " "), end='")

K: 128

W: 186

LF: 260
VKL: 340
FPW: 430
LFPW: 543
VKLFP: 584
WFENQY: 738

PWFNQY: 835
VKLFPWFN: 1031
VKLFPWFENQY: 1322

10

What a Mass Spectrum looks like e

e Peaks appear at frequently 100
occuring mass locations

e Y-axis indicates the relative
abundance, sometimes called 80 |- -
relative intensity

e The peaks roughly correspond

To our mass numbers 60 - 1
[97,99,113, 114, 128, 147, 163,

186, 227, 241, 242, 244, 260, 261, 40 L i
283, 291, 333, 340, 357, 388, 389,

405, 430, 447, 485, 487, 543, 544,
552, 575,577,584,671,672, 690, 20
691, 738, 770, 804, 818, 819, 835,

917,932,982, 1031, 1060, 1095, ‘ ,
11 59' 1223’ 1322] 0 *_.‘JL.L_, L 1ilL LML i R SranAd ¢ B gt I 0 RV WA T LA PO

0 200 400 600 800 1000 1200 1400
Mass/Charge Ratio

Comp 555 - Fall 2019 11

Let's try a smaller example

In [13]: | peptide = 'PLAY'
spectrum = TheoreticalSpectrum(peptide)
print(len(spectrum), spectrum

fragList = []
for fragLength in range(1, len(peptide)+1):
for start in range(0, len(peptide)-fragLength+1):
seq = peptide[start:start+fraglLength]
fragList.append((sum([Daltons[res] for res in seq]), seq))

print(len(fragList))
N=0
lastwWeight = 0
for weight, frag in sorted(fragList):
print("%12s: %4d%s" % (frag, weight, "*" if (weight == lastWeight) else " "), end='")
N += 1
if (N % 5 == 0):
print()
lastWeight = weight

10 [71, 97, 113, 163, 184, 210, 234, 281, 347, 444]

10
A 71 P: 97 L: 113 Y: 163 LA: 184
PL: 210 AY: 234 PLA: 281 LAY: 347 PLAY: 444

Comp 555 - Fall 2019

(7 ﬁﬂg\

N5
Can we Invert the Process of creating a Spectrum? ¥,

e In essence, the problem of inferring a peptide chain from the set of mass values reported
by a Mass Spectrometer is the inverse of the code we just wrote

Easy Problem: Peptide Sequence — Spectrum © Az ADEZSON W NDEZTOONS COM

Hard Problem: Spectrum — Peptide Sequence

e Why is computing a spectrum from a peptide
sequence easy? O(N?)?

e Why is computing a peptide sequence from
a specturm hard? O(?)

“I'm trying to back it up, but I cant find reverse.”

Comp 555 - Fall 2019 13

(7 «Pﬁ\\

How might you approach this problem?

Can you think of a Brute-Force way of solving this problem?

Here's one:

1. For every peptide sequence with the target peptide's molecular weight
2. Compute the sequence's Theoretical Spectrum
3. If it matches the one given, report this peptide as a possible solution

Which step in this algorithm is the hard part?

How many peptides have a molecular weight of 1322?
1. How long is the longest peptide under 1322 daltons?
2. How short is the shortest peptide over 1322 daltons?

Comp 555 - Fall 2019 14

A

(>

A Brute-Force Attempt

In [16]: def PossiblePeptide(spectrum, prefix='"):
""" Brute force method of generating all peptide sequences with a desired weight, the max of a given spectrum """
global peptidelList
if (len(prefix) == 0):
peptideList = []
current = sum([Daltons[res] for res in prefix])
target = max(spectrum) # our target
if (current == target):
peptideList.append(prefix)
elif (current < target):
for residue in Daltons.keys():
PossiblePeptide(spectrum, prefix+residue)

def TestPeptides(candidatelList, target):
filteredList = []
for peptide in candidatelist:
candidateSpectrum = TheoreticalSpectrum(peptide)
if (candidateSpectrum == target):
filteredList.append(peptide)
return filteredList

spectrum = TheoreticalSpectrum('PLAY")

%time PossiblePeptide(spectrum)

print(len(peptideList), "candidates", "PLAY" in peptidelist)
%time matches = TestPeptides(peptideList, spectrum)
print(matches, "PLAY" in matches)

CPU times: user 3.84 s, sys: 13 ms, total: 3.85 s
wall time: 3.85 s

3687 candidates True

CPU times: user 80 ms, sys: 0 ns, total: 80 ms
wall time: 79.8 ms

['PIAY', 'PLAY', 'YAIP', 'YALP'] True

Comp 555 - Fall 2019

Impressions? i,

e Not so bad for a first attempt, but how will it perform for longer peptides?
e We are getting the expected answer as well as answers with the indistinguishable amino acids

substituted
e We are also getting the sequence reversed? Is this a surprise?
e We could code around this, but for today we'll just include the reversed peptide chain as a possible

answer

Could we do better?

e The brute force method does not make good use of the spectrum it is given
e It only ever considers the largest mass value from this table
e How might we make use of the other values?

Comp 555 - Fall 2019

16

Improving on Brute Force

e We could extend our prefix using only residues that appear in our spectrum

e The weight of every new prefix that we consider should also be in our spectrum

Actual fragments: P, L, A, Y, PL, LA, AY, PLA, LAY, PLAY

Comp 555 - Fall 2019

A

Al
AIP
AIPY
ALY
AIYP

AL
ALP
ALPY
ALY
ALYP

AY
AYTI
AYIP
AYL
AYLP

LA
PLA
PLAY
LAY
PLAY

LA
PLA
PLAY
LAY
PLAY

AY
LAY
PLAY
LAY
PLAY

I

IA
IAP
IAPY
IAY
IAYP

IP
IPA
IPAY

LA
PLA
PLAY
LAY
PLAY

PL
PLA
PLAY

L

LA
LAP
LAPY
LAY
LAYP

LP
LPA
LPAY

LA
PLA
PLAY
LAY
PLAY

PL
PLA
PLAY

PI
PIA
PIAY

PL
PLA
PLAY

PL
PLA
PLAY

PL
PLA
PLAY

YA
YAI
YAIP
YAL
YALP

AY
LAY
PLAY
LAY
PLAY

17

Only a small change

In [19]: def ImprovedPossiblePeptide(spectrum, prefix='"):
global peptideList
if (len(prefix) == 0):
peptideList = []
current = sum([Daltons[res] for res in prefix])
target = max(spectrum)
if (current == target):
peptideList.append(prefix)
elif (current < target):
for residue in Daltons.keys():
make sure that this residue appears in our spectrum
if (Daltons[residue] not in spectrum):
continue
make sure that adding this residue to the sequence we have so far appears in our spectrum
extend = prefix + residue
if (sum([Daltons[res] for res in extend]) not in spectrum):
continue
ImprovedPossiblePeptide(spectrum, extend)

spectrum = TheoreticalSpectrum('PLAY")

%time ImprovedPossiblePeptide(spectrum)
print(len(peptideList), "PLAY" in peptidelist)
print(peptidelList)

%time matches = TestPeptides(peptidelList, spectrum)
print(matches, "PLAY" in matches)

CPU times: user 1 ms, sys: 0 ns, total: 1 ms
wWall time: 708 ps

16 True
['AIPY', 'AIYP', 'ALPY', 'ALYP', 'AYIP', 'AYLP', 'IAPY', 'IAYP', 'IPAY', 'LAPY', 'LAYP', 'LPAY', 'PIAY', 'PLAY', 'YAI
P', 'YALP']

CPU times: user 1 ms, sys: 0 ns, total: 1 ms
wall time: 537 us
['"PIAY', 'PLAY', 'YAIP', 'YALP'] True

Comp 555 - Fall 2019

Impact of a small change o,

e Provides a HUGE performace difference

e Yet another example of Branch-and-Bound

e We improved both the enumeration and verification phases, but the difference was much more
significant in the enumeration step

In [17]: print(', '.join([peptide for peptide in peptidelList]))
print(TheoreticalSpectrum('PLAY"))
print(TheoreticalSpectrum('LAPY"))

AIPY, AIYP, ALPY, ALYP, AYIP, AYLP, IAPY, IAYP, IPAY, LAPY, LAYP, LPAY, PIAY, PLAY, YAIP, YALP
[71, 97, 113, 163, 184, 210, 234, 281, 347, 444]
[71, 97, 113, 163, 168, 184, 260, 281, 331, 444]

In [18]: print(sum([Daltons[res] for res in 'AP'])) # Suffix of 'LAP' prefix
print(sum([Daltons[res] for res in 'APY'])) # Suffix of 'LAPY'
print(sum([Daltons[res] for res in 'PY'])) # Suffix of 'LAPY'

168
331
260

e There are still differences in the spectrums, yet every prefix was in the spectrum when we added it.
What are we missing?
e Suffixes!

Comp 555 - Fall 2019 19

We can do Even Better

All suffixes of each prefix that we consider should also be in our spectrum

In [21]: def UltimatePossiblePeptide(spectrum, prefix='"):
global peptideList
if (len(prefix) == 0):
peptideList = []
current = sum([Daltons[res] for res in prefix])
target = max(spectrum)
if (current == target):
peptideList.append(prefix)
elif (current < target):
for residue in Daltons.keys():
extend = prefix + residue
test every new suffix created by adding this new reside
Note: this includes the residue itself as the length 1 suffix
suffix = [extend[i:] for i in range(len(extend))]
for fragment in suffix:
if (sum([Daltons[res] for res in fragment]) not in spectrum):
break
else:
UltimatePossiblePeptide(spectrum, extend)

spectrum = TheoreticalSpectrum('PLAY")

%time UltimatePossiblePeptide(spectrum)
print(len(peptideList), peptideList, "PLAY" in peptidelList)
%time matches = TestPeptides(peptidelList, spectrum)
print(matches, "PLAY" in matches)

CPU times: user 1.1 ms, sys: 4 ps, total: 1.11 ms
wall time: 1.12 ms

4 ['PIAY', 'PLAY', 'YAIP', 'YALP'] True

CPU times: user 113 ps, sys: 0 ns, total: 113 us
wall time: 123 ps

['PIAY', 'PLAY', 'YAIP', 'YALP'] True

e Alittle slower, but our list is pruned significantly
e All of theses have identical spectrums

Comp 555 - Fall 2019

Now let's return to our Real peptide

In [23]: spectrum = TheoreticalSpectrum(TyrocidineB1)
%time UltimatePossiblePeptide(spectrum)
print(len(peptideList))
print(TyrocidineB1 in peptidelList)
%time matches = TestPeptides(peptideList, spectrum)
print(len(matches))
print(TyrocidineB1 in matches)

CPU times: user 31.4 ms, sys: 2.2 ms, total: 33.6 ms

wall time: 31.5 ms

['VKIFPWFNKY', 'VKIFPWFNQY', 'VKLFPWFNKY', 'VKLFPWFNQY', 'VQIFPWFNKY', 'VQIFPWFNQY', 'VQLFPWFNKY', 'VQLFPWFNQY', 'YKN
FWPFIKV', 'YKNFWPFIQV', 'YKNFWPFLKV', 'YKNFWPFLQV', 'YQNFWPFIKV', 'YQNFWPFIQV', 'YQNFWPFLKV', 'YQNFWPFLQV']

16

True

CPU times: user 1.11 ms, sys: 6 pys, total: 1.12 ms

wall time: 1.13 ms

16

True

In [24]: print(TyrocidineB1)
for i, peptide in enumerate(peptidelList):
print(peptide, end="',")
if (1% 4 == 3):
print()

VKLFPWFENQY
VKIFPWFNKY, VKIFPWENQY, VKLFPWFNKY, VKLFPWFNQY,
VQIFPWFNKY, VQIFPWFNQY, VQLFPWFNKY, VQLFPWFNQY,
YKNFWPFIKV, YKNFWPFIQV, YKNFWPFLKV, YKNFWPFLQV,
YQNFWPFIKY, YQNFWPFIQV, YQNFWPFLKV, YQNFWPFLQV,

Comp 555 - Fall 2019 21

Great, but our assumptions are a little Naive Lo
e Inreality, Mass Spectometers don't report the Theoretical Spectrum of a peptide
e Instead they report a measured or Experimental Spectrum
e This spectrum might miss some fragments
e It might also report false fragments

o From Contaminants
o New peptides formed by unintended reactions between fragments
e Theresultis that some of the masses that appear may be misleading, and some that we want might
be missing
e We need to develop algorithms for reporting candidate protein sequences that are robust to noise

More Next Time

Comp 555 - Fall 2019 22

