
Comp 555 - BioAlgorithms - Spring 2018
● Problem set #2

is late, but

still coming

Combinatorial Pattern Matching

Comp 555 - Fall 2019

A Recurring Problem
● Finding patterns within sequences

● Variants on this idea
○ Finding repeated motifs

amoungst a set of strings
○ What are the most

frequent k-mers
○ How many time does

a specific k-mer appear

● Fundamental problem: Pattern Matching
○ Find all positions of a particular substring in given sequence?

2

Comp 555 - Fall 2019

Pattern Matching
● Goal: Find all occurrences of a pattern in a text
● Input: Pattern p = p1,p2,…pn and text t = t1,t2,…tm
● Output: All positions 1 < i < (m – n + 1) such that the n-letter substring of t starting at i matches p

3

Comp 555 - Fall 2019

Pattern Matching Performance
● Performance:

○ m - length of the text t
○ n - the length of the pattern p
○ Search Loop - executed O(m) times
○ Comparison - O(n) symbols compared
○ Total cost - O(mn) per pattern

● In practice, most comparisons terminate early
● Worst-case:

○ p = "AAAT"
○ t = "AAAAAAAAAAAAAAAAAAAAAAAT"

4

Comp 555 - Fall 2019

We can do better!
If we preprocess our pattern we can search more effciently (O(n)). Example:
 imissmissmississippi
 1. s
 2. s
 3. s
 4. SSi
 5. s
 6. SSi
 7. s
 8. SSI - match at 11
 9. SSI - match at 14
 10. s
 11. s
 12. S

● At steps 4 and 6 after finding the mismatch "i" ≠ "m" we can skip over all positions tested because we
know that the suffix "sm" is not a prefix of our pattern "ssi"

● Even works for our worst-case example "AAAAT" in "AAAAAAAAAAAAAAT" by recognizing the shared
prefixes ("AAA" in "AAAA").

● How about finding multiple patterns [p1,p2,...,p3] in t

5

Comp 555 - Fall 2019

Keyword Trees
● We can preprocess the set of strings we are seeking to minimize the

|number of comparisons
● Idea: Combine patterns that share prefixes, to share those comparisons

○ Stores a set of keywords in a rooted labeled tree
○ Each edge labeled with a letter from an alphabet
○ All edges leaving a given vertex have distinct labels
○ Leaf vertices are indicated
○ Every keyword stored can be spelled on a path from

the root to some leaf vertex
○ Searches are performed by “threading” the

target pattern through the tree
● A Tree is a special graph as discussed previously

○ One connected component
○ N nodes, N-1 edges, No loops
○ Exactly one path from any.

● A Trie is a tree that is related to a sequence.
○ Generally, there is a 1-to-1 correspondence between

either nodes or edges of the trie and a symbol of the sequence

6

Comp 555 - Fall 2019

Prefix Trie Match
● Input: A text t and a trie P of patterns
● Output: True if t leads to a leaf in P; False otherwise

What is output for:

● apple
● band
● april

Performance:

● O(m) - the length of the text, t
● Independent of how many strings are in the Keyword Trie

7

Comp 555 - Fall 2019

Prefix Trie code

8

Comp 555 - Fall 2019

Multiple Pattern Matching

Suppose that we have a long string, t, like a genome, and we want to find if any of the strings in a
previously constructed prefix trie, P, appear within it.

● t - the text to search through
● P - the trie of patterns to search for

def multiplePatternMatching(t, P):
 locations = []
 for i in xrange(0, len(t)):
 if PrefixTrieMatch(t[i:], P):
 locations.append(i)
 return locations

9

Comp 555 - Fall 2019

Multiple Pattern Matching Example

multiplePatternMatching(“bananapple”, P):
 0: PrefixTrieMatching(“bananapple”, P) = True
 1: PrefixTrieMatching(“ananapple”, P) = False
 2: PrefixTrieMatching(“nanapple”, P) = False
 3: PrefixTrieMatching(“anapple”, P) = False
 4: PrefixTrieMatching(“napple”, P) = False
 5: PrefixTrieMatching(“apple”, P) = True
 6: PrefixTrieMatching(“pple”, P) = False
 7: PrefixTrieMatching(“ple”, P) = False
 8: PrefixTrieMatching(“le”, P) = False
 9: PrefixTrieMatching(“e”, P) = False

locations = [0, 5]

10

Comp 555 - Fall 2019

Trie Improvements
● Based on our previous speed-up
● We can add failure edges to our Trie
● Aho-Corasick Algorithm

The concept of "threading" one string through another

 bapple
 bap
 apple

11

Comp 555 - Fall 2019

Multiple Pattern Matching Performance
● m - len(t)
● d - max depth of P (longest pattern in P)
● O(md) to find all patterns
● Can be decreased further to O(m) using Aho-Corasick Algorithm
● Memory issues

○ Tries require a lot of memory
○ Practical implementation is challenging
○ Genomic reads - millions to billions of

● Patterns typically of length > 100

12

Comp 555 - Fall 2019

Now for a Twist
● What if our list of keywords were simply all suffixes of a single given string

 Example: ATCATG
 TCATG
 CATG
 ATG
 TG
 G

● The resulting keyword tree:
● A Suffix Trie

13

Comp 555 - Fall 2019

Suffix Tree
A compressed Suffix Trie

14

● Combine nodes with in
and out degree 1

● Edges are text substrings
● All internal nodes

have at least 3 edges
● All leaf nodes are

labeled with an index

Comp 555 - Fall 2019

Uses for Suffix Trees
● Suffix trees hold all suffixes of a text, T

○ i.e., ATCATG: ATCATG, TCATG, CATG, ATG, TG, G
● Can be built in O(m) time for text of length m
● To find any pattern P in a text:

○ Build suffix tree for text, O(m), m=|T|
○ Thread the pattern through the suffix tree
○ Can find pattern in O(n) time! (n=|P|)

● O(|T|+|P|) time for "Pattern Matching Problem"
(better than Naïve O(|P||T|)

● Build suffix tree and lookup pattern
● Multiple Pattern Matching in O(|T|+k|P|)

15

Comp 555 - Fall 2019

Suffix Tree Overhead
● Input: text of length m
● Computation

○ O(m) to compute a suffix tree
○ Does not require building the suffix trie first

● Memory
○ O(m) - nodes are stored as offsets and lengths

● Huge hidden constant, best implementations
● Requires about 20*m bytes
● 3 GB human genome = 60 GB RAM

16

Comp 555 - Fall 2019

Suffix Tree Examples
● What is the string represented in the suffix tree?
● What letter occurs most frequently?
● How many times doaes "ATG" appear, and where?
● How long is the longest repeated k-mer?

17

Comp 555 - Fall 2019

Suffix Trees: Theory vs. Practice
● In theory, suffix trees are extremely powerful for making a

variety of queries concerning a sequence
○ What is the shortest unique substring?
○ How many times does a given string

appear in a text?
● Despite the existence of linear-time

construction algorithms, and O(m)
search times, suffix trees are still
rarely used for genome-scale
searching

● Large storage overhead

18

Comp 555 - Fall 2019

Substring Searching
● Is there some other data structure to gain efficent access to all of the suffixes of a given string with

less overhead than a suffix tree?
● Some things we know

○ Searching an unordered list of items with length n generally requires O(n) steps
○ However, if we sort our items first, then we can search using O(log(n)) steps
○ Thus, if we plan to do frequent searchs there is some advantage to performing a sort first and

amortizing its cost over many searchs
● For strings suffixes are interesting items. Why?

 Suffixes: panamabananas Sorted Suffixes: abananas
 anamabananas amabananas
 namabananas anamabananas
 amabananas ananas
 mabananas anas
 abananas as
 bananas bananas
 ananas mabananas
 nanas namabananas
 anas nanas
 nas nas
 as panamabananas
 s s

19

Comp 555 - Fall 2019

Questions you can ask
Is there any use for a list of sorted suffixes?

 Sorted Suffixes: abananas
 amabananas
 anamabananas
 ananas
 anas
 as
 bananas
 mabananas
 namabananas
 nanas
 nas
 panamabananas
 s

● Does the substring "nana" appear in the orginal string?
● How many times does "ana" appear in the string?
● What is the most/least frequent letter in the orginal string?
● What is the most frequent two-letter substring in the orginal string?

20

Comp 555 - Fall 2019

Properties of a sorted “suffix array”
● Size of the sorted list if the given text has a length of m? O(m2)
● Cost of the sort? O(m2log(m))
● Not practical for big m
● There are many ways to sort

○ What is an “in place” sort?
○ What is a “stable” sort?
○ What is an “arg” sort?

21

Comp 555 - Fall 2019

Arg Sorting
Consider the list:

[72,27,45,36,18,54,9,63]

When sorted it is simply:

[9,18,27,36,45,54,63,72]

Its “arg” sort is:

[6,4,1,3,2,5,7,0]

● The ith element in the arg sort is the index of the ith element from the orginal list when sorted.
● Thus, [A[i] for i in argsort(A)] == sorted[A]

22

Comp 555 - Fall 2019

Code for Arg Sorting

23

Comp 555 - Fall 2019

Next Time
● We'll see how arg sorting can be used to

simplify representing our sorted list of suffixes
● Suffix arrays
● Burrows-Wheeler Transforms
● Applications in sequence alignment

24

