Comp 555 - BioAlgorithms - Spring 2018

o PROBLEM SET #2
IS DVE NEXT
TVESDAY.

® A NEW VERSION
OF PROBLEM SET
#) IS oW
ON-LINE

Finding Paths in Graphs

€
S

From Last Time

We discussed how to turn a sequence into a graph

GACGGCGGCGCACGGCGCAA GGCGC] GCGCA]
GACGG : -
AggggG Our original sequence is l
just a path in this graph eGeae. | <7
Gggggc How would you £ind i#?
CGGOG \q ' CGGCG, ‘
GGCGC Q

GCGCA ‘, \/ ‘
CGCAC
GCACG
ACGGC GACGG
CGGCG
GGCGC
GCGCA GCGGC ‘
—1 ACGGC,

CGCAA
By placing edges connecting k-mers ‘ — “vv
whose k-1 suffix matches a k-1prefix caca

Comp 555 - Fall 2019

(7 «Pﬁ\\

Parlor games

Once finding paths in graphs was a popular form of entertainment...

Graphs would be printed in newspapers, and people would try to find paths in
them as a game.

The rules of our game

Every node, k-mer, can be used exactly once
The object is to find a path along edges that
visits every node one time

e This game was invented in the mid 1800's by
a mathematician called Sir William Hamilton

An example of Hamilton’s game:

Comp 555 - Fall 2019

Finding a Hamiltonian Path in our graph e

For our desired sequence:
GACGGCGGCGCACGGCGCAA sccac, || cocon, |
is indeed a path in this graph. /|

</

How would you write a program \' Y‘
S 5

To solve Hamilton's puzzles: ~"

Is the solution unique? GCG

Comp 555 - Fall 2019

Another represention of k-mers in a graph

e Rather than making each k-mer a node, let's try making them an edge
e That seems odd, but it is related to the overlap idea
o The 5-mer GACGG has a prefix GACG and a suffix ACGG
o Think of the k-mer as the edge connecting a prefix to a suffix
o This leads to a series of simple graphs

GACG

ACGG

CGGC

GGCG

GACGG

ACGGC

CGGCG

GGCGG

()

ACGG

G

CGGC

.

GGCG

G 3

CGGG

o Then combine all nodes with the same label

Comp 555 - Fall 2019

GCGG

CGGC

GGCG

GCGC

GCGGC
CGGC

CGGCG
GGCG

GGCGC

GCGC
GCGCA

CGCA

A De Bruijn Graph e,

This graph, like the previous one has the property that edges @
connect nodes where a k-1 suffix matches a k-1 prefix.
Graphs of this type are called "De Bruijn" graphs, after a
famous mathematician.

Recall that our original 5-mers are edges in this graph,
whereas they were nodes in the previous one.

Now, how might you infer the original sequence using this
graph?

GCAA

Comp 555 - Fall 2019

?

This leads to a new game

The rules of our new game

e Every edge, k-mer, can be used
exactly once

e The object is to find a path in the
graph that uses each edge only one
time

e This game was invented in the late
1700's by a mathematician called
Leonhard Euler

A version of Euler's game:

Leonhard Euler

Bridges of Konigsberg: Find a city tour that
crosses every bridge just once

Comp 555 - Fall 2019 7

Two graphs, same problem e

Two graphs representing 5-mers from the sequence "GACGGCGGCGCACGGCGCAA"

Hamiltonian Path: Eulerian Path:

Each k-mer is a vertex. Find a path that passes through Each k-mer is an edge. Find a path that passes through
every vertex of this graph exactly once. every edge of this graph exactly once.

Comp 555 - Fall 2019

De Bruijn's Problem

Nicolaas de Bruijn
(1918-2012)

A dutch mathematician noted for his many
contributions in the fields of graph theory,
number theory, combinatorics and logic.

Comp 555 - Fall 2019

&

(77

Minimal Superstring Problem:

Find the shortest sequence that contains all [Z| strings
of length k from the alphabet X as a substring.

Example: All strings of length 3 from the alphabet {'0','1'}.

binary3 = {'000', '001', '010", '011', '100, '101", '110', '111'}

101 100 111 100
001.111 001 101

Solution #1: 0001011100 Solution #2: 0001110100
000 011 000 110

010 110 011 010

He solved this problem by mapping it to a graph. Note, this
particular problem leads to cyclic sequence.

177 aﬂ‘\

De Bruijn's Graphs

Minimal Superstrings can be constructed by 8(&??_gii‘ﬁﬁlﬁghgI%’fgﬂ:jﬁﬁfpﬁ iI:eE:e

finding a Hamiltonian path of an _
k-dimensional De Bruijn graph. Defined as a edges represent the k-length substrings.

graph with |Z|¥ knodes and edges from nodes
whose k-1 suffix matches a node's k-1 prefix

0001 000

7

100

Comp 555 - Fall 2019

10

Solving Graph Problems on a Computer KN

Graph Representations An Adjacency Matrix:

A|B|C|D|E

An example graph:
Al0|1]0|0]1
B|0[0|1]1]0
c|i|olo|0]O
o‘ D|1]|0|0]0 |0
’ ° E|0[1|1]1]0

An n x n matrix where Aij is
° 1 if there is an edge

connecting the ith vertex to
the ji" vertex and 0
otherwise.

Comp 555 - Fall 2019

Adjacency Lists:

Edge =[(0,1), (0,4),
(1,2), (1.3),
(2,0),
(3,0),
(4,1), (4,2), (4,3)]

An array or list of vertex pairs (i)
indicating an edge from the ith
vertex to the j" vertex.

11

An adjacency list graph object

In [1]: M class BasicGraph:

def

def

def

Comp 555 - Fall 2019

. init_ (self, vlist=[]):

""" Tnitialize a Graph with an optional vertex list """

self.index = {v:i for i,v in enumerate(vlist)} # looks up index given name
looks up name given index

self.vertex = {i:v for i,v in enumerate(vlist)}
self.edge = []
self.edgelabel = []

addVertex(self, label):

""" Add a labeled vertex to the graph """
index = len(self.index)

self.index[label] = index
self.vertex[index] = label

addeEdge(self, vsrc, vdst, label='', repeats=True):
""" Add a directed edge to the graph, with an optional label.
Repeated edges are distinct, unless repeats is set to False. """
e = (self.index[vsrc], self.index[vdst])
if (repeats) or (e not in self.edge):

self.edge.append(e)

self.edgelabel.append(label)

A\

(>

12

Usage example

Let's generate the vertices needed to find De Bruijn's superstring of 4-bit binary strings...
and create a graph object using them.

In [2]: M

Comp 555 - Fall 2019

import itertools

binary = [''.join(t) for t in itertools.product('0l', repeat=4)]
print(binary)

G1 = BasicGraph(binary)

for vsrc in binary:

G1.addEdge(vsrc, vsrc[1:]+'0")
G1.addEdge(vsrc, vsrc[1:]+'1")

print()

print("vVertex indices = ", G1.index)

print()

print("Index to Vertex = ",Gl.vertex)

print()

print("Edges = ", Gl.edge)

['e0eO', 'GOOG1', '®O0l0', 'eeil', 'eilee', 'eie1', 'eile', 'eiili', 'leee', '1ee1', 'l1eie', 'liei11', 'iiee', '1
101', '111e0', '1111']

Vvertex indices = {'0000': 0, '0001': 1, '0010': 2, '6011': 3, '0100': 4, 'e101': 5, 'G110': 6, '6111': 7,

'1000': 8, '1001': 9, 'l1e10': 10, '1611': 11, '11e0': 12, '11e1': 13, '11160': 14, '1111': 15}

Index to Vertex = {0: '0000', 1: '0001', 2: '0610', 3: '6011', 4: '0100', 5: 'ei1e1', 6: 'eG110', 7: 'e6111',
8: '1e00', 9: '1001', 16: '1ei10', 11: 'i1e611', 12: '11ee', 13: '11e1', 14: '11i1e', 15: '1111'}

Edges = [(o, ©), (o, 1), (1, 2), (1, 3), (2, 4), (2, 5), (3, 6), (3, 7), (4, 8), (4, 9), (5, 10), (5, 11),
(6, 12), (6, 13), (7, 14), (7, 15), (8, @), (8, 1), (9, 2), (9, 3), (1e, 4), (16, 5), (11, 6), (11, 7), (1

2, 8), (12, 9), (13, 10), (13, 11), (14, 12), (14, 13), (15, 14), (15, 15)]

13

The resulting graph

Comp 555 - Fall 2019

14

The Hamiltonian Path Problem

Next, we need an algorithm to find a path in a graph that visits every node exactly once,
if such a path exists.

How?

Approach:

® Enumerate every possible path (all permutations of N vertices).
Python's itertools.permutations() does this.

® Verify that there is an edge connecting all N-1 pairs of adjacent vertices

Comp 555 - Fall 2019

€
\‘g‘!

15

All vertex permutations = every possible path

A simple graph with 4 vertices

In [5]:

start = 1

for path in itertools.permutations([1,2,3,4]):

M import itertools

if (path[@] != start):
print()

(1, 2,
1, 3, 4),
(3, 1,
1, 2, 3),

Comp 555 - Fall 2019

start = path[0]
print(path, end=', '

3, 4),

2, 4),

(1, 2,
(2, 1,
(3, 1,
(4, 1,

4
4,
4,
3

NN W W

~

R R RN

NN WW

[S

[V S

R R RN

[V S S

NN WW

(7 ?ﬂg\

2

16

(7 ﬁﬂg\
|

A Hamiltonian Path Algorithm

e Test each vertex permutation to see if it is a valid path
e Let's extend our BasicGraph into an EnhancedGraph class
e Create the superstring graph and find a Hamiltonian Path

In [10]: M import itertools

class EnhancedGraph(BasicGraph):
def hamiltonianPath(self):
"nm A Brute-force method for finding a Hamiltonian Path.
Basically, all possible N! paths are enumerated and checked
for edges. Since edges can be reused there are no distictions
made for *which* version of a repeated edge. """
for path in itertools.permutations(sorted(self.index.values()))
for i in range(len(path)-1):
if ((path[i],path[i+1]) not in self.edge):
break
else:
return [self.vertex[i] for i in path]
return []

G1 = EnhancedGraph(binary)

for vsrc in binary:
G1l.addEdge(vsrc,vsrc[1:]+'0")
Gl.addEdge(vsrc,vsrc[1:]+'1")

WARNING: takes about 20 mins

%time path = Gl.hamiltonianPath()

print(path)

superstring = path[0] + ''.join([path[i][3] for i in range(1,len(path))])
print(superstring)

CPU times: user 18min 11s, sys: 52 ms, total: 18min 11s
wall time: 18min 11s
['e000', '6G0O1', '6010', '6160', '1601', '6611', 'e116', '1161', 'i1e16', 'e161', '1611', 'e6111', '1111', '1
110', '1100', '1000']
0000100110101111000
Comp 555 - Fall 2019

Visualizing the result

Comp 555 - Fall 2019

18

|s this solution unique? i,

How about the path ="0000111101001011000"

e Our Hamiltonian path finder produces a single path, if one exists.
e How would you modify it to produce every valid Hamiltonian path?
e How long would that take?

One of De Bruijn's contributions is that there are:

(G!)Gk—l

ok

paths leading to superstrings where o=|%Z|. C \ /

In our case 0=2 and k = 4, so there should be 28 / 2* = 16 paths.
(ignoring those that are just different starting points on the same cycle)

((((((

Comp 555 - Fall 2019 19

Brute Force is slow!

e There are N! possible paths for N vertices.
e Our 16 vertices give 20,922,789,888,000 possible paths

e There is a fairly simple Branch-and-Bound evaluation strategy
o Grow the path using only valid edges

e Use recursion to extend paths along graph edges

e Trick is to maintain two lists:
o The path so far, where each adjacent pair of vertices is connected by an edge
o Unused vertices. When the unused list becomes empty we've found a path

Comp 555 - Fall 2019

20

A Branch-and-Bound Hamiltonian Path Finder

In [9]:

Comp 555 - Fall 2019

M import itertools

class ImprovedGraph(BasicGraph):

def

def

SearchTree(self, path, verticesLeft):
""" A recursive Branch-and-Bound Hamiltonian Path search.
Paths are extended one node at a time using only available
edges from the graph. """
if (len(verticesLeft) == 0):
self.Pathv2result = [self.vertex[i] for 1 in path]
return True
for v in verticesLeft:
if (len(path) == 0) or ((path[-1],v) in self.edge):
if self.SearchTree(path+[v], [r for r in verticesLeft if r != v]):
return True
return False

hamiltonianPath(self):

"o A wrapper function for invoking the Branch-and-Bound
Hamiltonian Path search. """

self.Pathv2result = []
self.SearchTree([],sorted(self.index.values()))

return self.Pathv2result

G1 = ImprovedGraph(binary)

for vsrc in binary:
G1l.addEdge(vsrc,vsrc[1:]+'0")
G1l.addEdge(vsrc,vsrc[1:]+'1")

%timeit
path =

path = Gl.hamiltonianPath()

G1.hamiltonianPath()

print(path)
superstring = path[0] + ''.join([path[i][3] for i in range(1,len(path))])
print(superstring)

81 ps +

['0000',

684 ns per loop (mean *+ std. dev. of 7 runs, 10000 loops each)
'P001', '0010', 'e160', '1601', '6e11', 'e116', 'i1161', '1610', 'e1e1', 'i1ei11', 'ei111', '1111',

110', '1100', '1000']
00001001101601111000

b

21

;Xﬁfm‘_

y -

|s there a better Hamiltonian Path Algorithm?

Better in what sense?

Better = number of steps to find a solution are polynomial in either the number of edges or vertices
Polynomial: variablecnstant
Exponential: constant'@'® or worse, variable'aav'e NP Problems
For example our Brute-Force algorithm was O(V!)=0(V") where

@]
V is the number of vertices in our graph, a problem variable
. . . P Problems
e We can only practically solve only small problems if the algorithm

for solving them takes a number of steps that grows exponentially NP Complete
with a problem variable (i.e. the number of vertices), or else be ® 2 Findng
satisfied with heuristic or approximate solutions
° Can we prove that there is no algorithm that can find a Hamiltonian Path \ | i ' i

in a time that is polynomial in the number of vertices or edges in the graph? .‘ |
No one has, and here is a million-dollar reward if you can! “ NP-Hard | NP-Hard \
If instead of a brute who just enumerates all possible answers we
knew an oracle could just tell us the right answer (i.e. Nondeterministically)
It's easy to verify that an answer is correct in Polynomial time.
A lot of known similar problems will suddenly become solvable using your algorithm

NP-Complete

P=NP=
NP-Complete

NP

P = NP

Comp 555 - Fall 2019 22

What next?

Is there hope?

BRUTE-FORCE
SOLUT1ON:

o(n!)

DYNAMIC
PROGRAMMING
ALGORITHMS:

O:(n*2")

SELUNG ON ERAY:

0(1)

STILL WORKING
ON YOUR ROUTE?
\

e
SHUT THE
HEW VR

What if our k-mers are edges?

Comp 555 - Fall 2019

(>

23

