A Recurring Problem

- Finding patterns within sequences
- Variants on this idea
 - Finding repeated motifs amongst a set of strings
 - What are the most frequent k-mers
 - How many times does a specific k-mer appear
- Fundamental problem: *Pattern Matching*
 - Find all positions of a particular substring in a given sequence?
Pattern Matching

- **Goal:** Find all occurrences of a pattern in a text
- **Input:** Pattern $p = p_1, p_2, \ldots, p_n$ and text $t = t_1, t_2, \ldots, t_m$
- **Output:** All positions $1 < i < (m - n + 1)$ such that the n-letter substring of t starting at i matches p

```python
def bruteForcePatternMatching(p, t):
    locations = []
    for i in xrange(0, len(t) - len(p) + 1):
        if t[i:i+len(p)] == p:
            locations.append(i)
    return locations

print bruteForcePatternMatching("ssi", "imissmissmississippi")
```

```
[11, 14]
```
Pattern Matching Performance

- Performance:
 - m - length of the text t
 - n - the length of the pattern p
 - Search Loop - executed $O(m)$ times
 - Comparison - $O(n)$ symbols compared
 - Total cost - $O(mn)$ per pattern
- In practice, most comparisons terminate early
- Worst-case:
 - $p = "AAAT"$
 - $t = "AAAAAAAAAAAAAAAAAAAT"$
Pattern Matching Performance

- Performance:
 - \(m \) - length of the text \(t \)
 - \(n \) - the length of the pattern \(p \)
 - Search Loop - executed \(O(m) \) times
 - Comparison - \(O(n) \) symbols compared
 - Total cost - \(O(mn) \) per pattern
- In practice, most comparisons terminate early
- Worst-case:
 - \(p = "AAAT" \)
 - \(t = "AAAAAAAAAAAAAAAAAAAAAAAT" \)
We can do better!

If we preprocess our pattern we can search more efficiently ($O(n)$)

Example:

```
  imississippi
1.  s
2.   s
3.    s
4.      Ssi
5.        Ssi
6.          Ssi
7.            Ssi
8.              SSI - match at 11
9.                SSI - match at 14
10.                  s
11.                    s
12.                      s
```

- At steps 4 and 6 after finding the mismatch $i \neq m$ we can skip over all positions tested because we know that the suffix "sm" is not a prefix of our pattern "ssi"
- Even works for our worst-case example "AAAAT" in "AAAAAAAAAAAAAAAAAT" by recognizing the shared prefixes ("AAA" in "AAAA")
- How about finding multiple patterns [p_1, p_2, \ldots, p_3] in t
Keyword Trees

- We can preprocess the set of strings we are seeking to minimize the number of comparisons
- **Idea:** Combine patterns that share prefixes, to *share* those comparisons
 - Stores a set of keywords in a rooted labeled tree
 - Each edge labeled with a letter from an alphabet
 - All edges leaving a given vertex have distinct labels
 - Leaf vertices are indicated
 - Every keyword stored can be spelled on a path from root to some leaf vertex
 - Searches are performed by “threading” the target pattern through the tree
- A tree is a special graph as discussed previously
 - one connected component
 - N nodes
 - $N-1$ edges
 - No loops
 - Exactly one path from any.
- A **Trie** is a tree that is related to a sequence.
 - Generally, there is a 1-to-1 correspondence between either nodes or edges of the *trie* and a symbol of the sequence
Multiple Pattern Matching

- t - the text to search through
- P - the trie of patterns to search for

```python
def multiplePatternMatching(t, P):
    locations = []
    for i in xrange(0, len(t)):
        if PrefixTrieMatch(t[i:], P):
            locations.append(i)
    return locations
```
Multiple Pattern Matching

- t - the text to search through
- P - the trie of patterns to search for

```python
def multiplePatternMatching(t, P):
    locations = []
    for i in xrange(0, len(t)):
        if PrefixTrieMatch(t[i:], P):
            locations.append(i)
    return locations
```
multiplePatternMatching("bananapple", P):
0: PrefixTrieMatching("bananapple", P) = True
1: PrefixTrieMatching("ananapple", P) = False
2: PrefixTrieMatching("nanapple", P) = False
3: PrefixTrieMatching("anapple", P) = False
4: PrefixTrieMatching("napple", P) = False
5: PrefixTrieMatching("apple", P) = True
6: PrefixTrieMatching("pple", P) = False
7: PrefixTrieMatching("ple", P) = False
8: PrefixTrieMatching("le", P) = False
9: PrefixTrieMatching("e", P) = False

locations = [0, 5]
Improvements

- Based on our previous speed-up
- We can add failure edges to our Trie
- *Aho-Corasick* Algorithm

bapple
bap
apple
Multiple Pattern Matching Performance

- $m - \text{len}(t)$
- $d - \text{max depth of } P \text{ (longest pattern in } P)$
- $O(md)$ to find all patterns
- Can be decreased further to $O(m)$ using Aho-Corasick Algorithm (see pg 353)
- Memory issues
 - Tries require a lot of memory
 - Practical implementation is challenging
 - Genomic reads - millions to billions of
- Patterns typically of length > 100
Another Twist

- What if our list of keywords were simply all suffixes of a given string

 Example: ACATG
 CATG
 ATG
 TG
 G

- The resulting keyword tree:
- A Suffix Trie
A compressed Suffix Trie

- Combines nodes with in and out degree 1
- Edges are text substrings
- All internal nodes have at least 3 edges
- All leaf nodes are labeled with an index
Uses for Suffix Trees

- Suffix trees hold all suffixes of a text, T
 - i.e., ATCGC: ATCGC, TCGC, CGC, GC, C
- Can be built in $O(m)$ time for text of length m
- To find any pattern P in a text:
 - Build suffix tree for text, $O(m)$, $m = |T|$
 - Thread the pattern through the suffix tree
 - Can find pattern in $O(n)$ time! ($n = |P|$)
- $O(|T| + |P|)$ time for "Pattern Matching Problem"
 (better than Naïve $O(|P||T|)$)
- Build suffix tree and lookup pattern
- Multiple Pattern Matching in $O(|T| + k|P|)$
Suffix Tree Overhead

- Input: text of length m
- Computation
 - $O(m)$ to compute a suffix tree
 - Does not require building the suffix trie first
- Memory
 - $O(m)$ - nodes are stored as offsets and lengths
- Huge hidden constant, best implementations
- Requires about 20^*m bytes
- 3 GB human genome = 60 GB RAM
Suffix Tree Overhead

- Input: text of length m
- Computation
 - $O(m)$ to compute a suffix tree
 - Does not require building the suffix trie first
- Memory
 - $O(m)$ - nodes are stored as offsets and lengths
- Huge hidden constant, best implementations
- Requires about $20 \times m$ bytes
- 3 GB human genome = 60 GB RAM
Suffix Tree Examples

- What is the string represented in the suffix tree?
- What letter occurs most frequently?
- How many times does "ATG" appear, and where?
- How long is the longest repeated k-mer?
Suffix Trees: Theory vs. Practice

- In theory, suffix trees are extremely powerful for making a variety of queries concerning a sequence
 - What is the shortest unique substring?
 - How many times does a given string appear in a text?
- Despite the existence of linear-time construction algorithms, and $O(m)$ search times, suffix trees are still rarely used for genome-scale searching
- Large storage overhead
Substring Searching

- Is there some other data structure to gain efficient access to all of the suffixes of a given string with less overhead than a suffix tree?
- Some things we know
 - Searching an unordered list of items with length \(n \) generally requires \(O(n) \) steps
 - However, if we sort our items first, then we can search using \(O(\log(n)) \) steps
 - Thus, if we plan to do frequent searches there is some advantage to performing a sort first and amortizing its cost over many searches
- For strings suffixes are interesting items. Why?

<table>
<thead>
<tr>
<th>Suffixes:</th>
<th>panamabanananas</th>
<th>anamabanananas</th>
<th>namabanananas</th>
<th>amabanananas</th>
<th>mabanananas</th>
<th>abanananas</th>
<th>bananas</th>
<th>ananas</th>
<th>nanas</th>
<th>anas</th>
<th>nas</th>
<th>as</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorted Suffixes:</td>
<td>abanananas</td>
<td>amabanananas</td>
<td>anamabanananas</td>
<td>ananas</td>
<td>anas</td>
<td>as</td>
<td>bananas</td>
<td>mabanananas</td>
<td>namabanananas</td>
<td>nanas</td>
<td>nas</td>
<td>panamabanananas</td>
<td>s</td>
</tr>
</tbody>
</table>
Questions you can ask

Is there any use for a list of sorted suffixes?

Sometimes the questions are complicated and the answers are simple.

Sorted Suffixes: abanananas
 amabananas
 anamabananas
 ananas
 anas
 as
 bananas
 mabananas
 namabananas
 nanas
 nas
 panamabananas
 s

• Does the substring "nana" appear in the orginal string? How?
• How many times does "ana" appear in the string?
• What is the most/least frequent letter in the orginal string?
• What is the most frequent two-letter substring in the orginal string?
Properties of a Naive sorted suffix implementation

- Size of the sorted list if the given string has a length of n? $O(n^2)$
- Cost of the sort? $O(n^2 \log(n))$
- Practical for big n
- There are many ways to sort
 - What is an in place sort?
 - What is a stable sort?
 - What is an arg sort?
Arg Sorting

Consider the list:

\[[7, 2, 4, 3, 1, 5, 9, 6] \]

When sorted it is simply:

\[[0, 1, 2, 3, 4, 5, 6, 7] \]

Its arg sort is:

\[[6, 4, 1, 3, 2, 5, 7, 0] \]

- The \(i^{th} \) element in the arg sort is the index of the \(i^{th} \) element from the original list when sorted.
- Thus, \([A[i] \text{ for } i \text{ in argsort}(A)] == \text{sorted}[A]\)
def argsort(input):
 return sorted(range(len(input)), cmp=lambda i, j: 1 if input[i] >= input[j] else -1)

A = [7, 2, 4, 3, 1, 5, 0, 6]
print argsort(A)
print [A[i] for i in argsort(A)]

print
B = ['TAGACAT', 'AGACAT', 'GACAT', 'ACAT', 'CAT', 'AT', 'T']
print argsort(B)
print [B[i] for i in argsort(B)]

[6, 4, 1, 3, 2, 5, 7, 0]
[0, 1, 2, 3, 4, 5, 6, 7]

[3, 1, 5, 4, 2, 6, 0]
['ACAT', 'AGACAT', 'AT', 'CAT', 'GACAT', 'T', 'TAGACAT']
Next Time

- We'll see how arg sorting can be used to simplify representing our sorted list of suffixes
- Suffix arrays
- Burrows-Wheeler Transforms
- Applications in sequence alignment