
3/28/16 Comp 555 Spring 2016 1

3/28/16 Comp 555 Spring 2016 2

•  We developed a SimpleReversalSort algorithm that sorts
by extending its prefix on every iteration (n-1) steps.

•  On π : 6 1 2 3 4 5
 Flip 1: 1 6 2 3 4 5
 Flip 2: 1 2 6 3 4 5
 Flip 3: 1 2 3 6 4 5
 Flip 4: 1 2 3 4 6 5
 Flip 5: 1 2 3 4 5 6

•  But it could have been sorted in two flips:

 π : 6 1 2 3 4 5
 Flip 1: 5 4 3 2 1 6

 Flip 2: 1 2 3 4 5 6

We probably don’t want to use
 this algorithm to estimate
 the reversal distance
 between two genomes

3/28/16 Comp 555 Spring 2016 3

•  Today’s algorithms find approximate solutions
rather than optimal solutions

•  The approximation ratio of an algorithm A on
input π is:
 A(π) / OPT(π)
where
 A(π) - solution produced by algorithm A

OPT(π) - optimal solution of the problem

3/28/16 Comp 555 Spring 2016 4

• Approximation ratio (performance guarantee) of
algorithm A: max approximation ratio over all
inputs of size n

– For a minimizing algorithm A (like ours):
• Approx Ratio = max|π| = n A(π) / OPT(π) ≥ 1.0

– For maximization algorithms:
• Approx Ratio = min|π| = n A(π) / OPT(π) ≤ 1.0

3/28/16 Comp 555 Spring 2016 5

SimpleReversalSort(π)
1 for i ! 1 to n – 1
2 j ! position of element i in π (i.e., πj = i)
3 if j ≠i
4 π ! π ρ(i, j)
5 output π
6 if π is the identity permutation
7 return

approximation
 ratio?

Step 0: 6 1 2 3 4 5
Step 1: 1 6 2 3 4 5
Step 2: 1 2 6 3 4 5
Step 3: 1 2 3 6 4 5
Step 4: 1 2 3 4 6 5
Step 5: 1 2 3 4 5 6

A(π)? n-1
 OPT(π)?

Step 0: 6 1 2 3 4 5
Step 1: 5 4 3 2 1 6
Step 2: 1 2 3 4 5 6

any better
 greedy

 algorithms?

3/28/16 Comp 555 Spring 2016 6

 π = π1π2π3…πn-1πn

• A pair of neighboring elements π i and π i + 1
are adjacent if

 πi+1 = πi + 1
•  For example:
 π = 1 9 3 4 7 8 2 6 5

•  (3, 4) or (7, 8) and (6,5) are adjacent pairs

3/28/16 Comp 555 Spring 2016 7

Breakpoints occur between neighboring non-
adjacent elements:

 π = 1 9 3 4 7 8 2 6 5

•  Pairs (1,9), (9,3), (4,7), (8,2) and (2,5) define 5
breakpoints of permutation π

•  b(π) - # breakpoints in permutation π

3/28/16 Comp 555 Spring 2016 8

•  One can place two elements π 0 =0 and π n + 1=n+1 at
the beginning and end of π respectively

Extending with 0 and 10

A new breakpoint was created after extending

π = 1 9 3 4 7 8 2 6 5

π = 0 1 9 3 4 7 8 2 6 5 10

An extended permutation of n can have at most
(n+1) breakpoints, (n-1 between elements plus 2)

3/28/16 Comp 555 Spring 2016 9

"  Breakpoints are the bottlenecks for sorting by reversals once
they are removed, the permutation is sorted.

"  Each “useful” reversal eliminates at least 1 and at most 2
breakpoints.

"  Consider the following application of
 SimpleReversalSort(Extend(π)):

π = 2 3 1 4 6 5
 0 2 3 1 4 6 5 7
 0 1 3 2 4 6 5 7
 0 1 2 3 4 6 5 7
 0 1 2 3 4 5 6 7

b(π) = 5
b(π) = 4
b(π) = 2
b(π) = 0

€

required
reversals ≥

b(π)
2

3/28/16 Comp 555 Spring 2016 10

BreakPointReversalSort(π)
1 while b(π) > 0
2 Among all possible reversals,  

choose reversal ρ minimizing b(π • ρ)
3 π ! π • ρ(i, j)
4 output π
5 return

Does it always terminate?

What if no reversal reduces the
 number of breakpoints?

The “greedy” concept here is to
 reduce as many breakpoints as
 possible

0 1 2 5 6 7 3 4 8 9

3/28/16 Comp 555 Spring 2016 11

• Strip: an interval between two consecutive
breakpoints in a permutation
– Decreasing strip: strip of elements in decreasing

order (e.g. 6 5 and 3 2).
–  Increasing strip: strip of elements in increasing

order (e.g. 7 8)

 0 1 9 4 3 7 8 2 5 6 10

– A single-element strip can be declared either
increasing or decreasing. We will choose to
declare them as decreasing with exception of
extension strips (with 0 and n+1)

3/28/16 Comp 555 Spring 2016 12

If permutation π contains at least one
decreasing strip, then there exists a
reversal ρ which decreases the number
of breakpoints (i.e. b(π • ρ) < b(π)).

How can we be sure
 that we decrease
 the number of
 breakpoints?

Which
 reversal?

Consider π = 1 4 6 5 7 8 3 2

0 1 4 6 5 7 8 3 2 9 b(π) = 5

3/28/16 Comp 555 Spring 2016 13

•  Choose the decreasing strip with the smallest
element k in π
(it’ll always be the rightmost element of that strip)

•  Find k – 1 in the permutation
 (it’ll always be flanked by a breakpoint)

•  Reverse the segment between k and k-1

Consider π = 1 4 6 5 7 8 3 2

0 1 4 6 5 7 8 3 2 9 b(π) = 5 2 1 4 6 5 7 8 3 2

Thus, removing
 the breakpoint
 flanking k-1

3/28/16 Comp 555 Spring 2016 14

Consider π = 1 4 6 5 7 8 3 2

0 1 2 3 8 7 5 6 4 9 b(π) = 4 1
reduced by 1!

•  Choose the decreasing strip with the smallest
element k in π
(it’ll always be the rightmost element of that strip)

•  Find k – 1 in the permutation
 (it’ll always be flanked by a breakpoint)

•  Reverse the segment between k and k-1

3/28/16 Comp 555 Spring 2016 15

Consider π = 1 4 6 5 7 8 3 2

0 1 2 3 8 7 5 6 4 9 b(π) = 4 4 3 8 7 5 6 4

•  Choose the decreasing strip with the smallest
element k in π
(it’ll always be the rightmost element of that strip)

•  Find k – 1 in the permutation
 (it’ll always be flanked by a breakpoint)

•  Reverse the segment between k and k-1

3/28/16 Comp 555 Spring 2016 16

Consider π = 1 4 6 5 7 8 3 2

0 1 2 3 4 6 5 7 8 9 b(π) = 2 4 3

•  Choose the decreasing strip with the smallest
element k in π
(it’ll always be the rightmost element of that strip)

•  Find k – 1 in the permutation
 (it’ll always be flanked by a breakpoint)

•  Reverse the segment between k and k-1

3/28/16 Comp 555 Spring 2016 17

Consider π = 1 4 6 5 7 8 3 2

0 1 2 3 4 6 5 7 8 9 b(π) = 2 5 4 6 5

•  Choose the decreasing strip with the smallest
element k in π
(it’ll always be the rightmost element of that strip)

•  Find k – 1 in the permutation
 (it’ll always be flanked by a breakpoint)

•  Reverse the segment between k and k-1

3/28/16 Comp 555 Spring 2016 18

Consider π = 1 4 6 5 7 8 3 2

0 1 2 3 4 5 6 7 8 9 b(π) = 0

•  Choose the decreasing strip with the smallest
element k in π
(it’ll always be the rightmost element of that strip)

•  Find k – 1 in the permutation
 (it’ll always be flanked by a breakpoint)

•  Reverse the segment between k and k-1

No breakpoints left!

3/28/16 Comp 555 Spring 2016 19

0 1 4 6 5 7 8 3 2 9 b(π) = 5

Consider π = 1 4 6 5 7 8 3 2

0 1 2 3 8 7 5 6 4 9 b(π) = 4

0 1 2 3 4 6 5 7 8 9 b(π) = 2

0 1 2 3 4 5 6 7 8 9 b(π) = 0

d(π) = 3

Does it work
 for any

 permutation?

3/28/16 Comp 555 Spring 2016 20

•  If there is no decreasing strip, there may be no
strip-reversal ρ that reduces the number of breakpoints
(i.e. b(π • ρ) ≥ b(π) for any reversal ρ).

•  However, reversing an increasing strip creates a
decreasing strip, and the number of breakpoints remains
unchanged.

•  Then the number of breakpoints will be reduced in the
following steps.

0 1 2 5 6 7 3 4 8 9

no
decreasing

strips!
b(π) = 3

Create one!

5 6 7

3/28/16 Comp 555 Spring 2016 21

•  If there is no decreasing strip, there may be no
strip-reversal ρ that reduces the number of breakpoints
(i.e. b(π • ρ) ≥ b(π) for any reversal ρ).

•  However, reversing an increasing strip creates a
decreasing strip, and the number of breakpoints remains
unchanged.

•  Then the number of breakpoints will be reduced in the
following steps.

0 1 2 7 6 5 3 4 8 9

one
decreasing

strip!

b(π) = 3 5

k k-1

4 3 4

3/28/16 Comp 555 Spring 2016 22

•  If there is no decreasing strip, there may be no
strip-reversal ρ that reduces the number of breakpoints
(i.e. b(π • ρ) ≥ b(π) for any reversal ρ).

•  However, reversing an increasing strip creates a
decreasing strip, and the number of breakpoints remains
unchanged.

•  Then the number of breakpoints will be reduced in the
following steps.

0 1 2 7 6 5 4 3 8 9

one
decreasing

strip!

b(π) = 2 5

k k-1

4

3/28/16 Comp 555 Spring 2016 23

•  If there is no decreasing strip, there may be no
strip-reversal ρ that reduces the number of breakpoints
(i.e. b(π • ρ) ≥ b(π) for any reversal ρ).

•  However, reversing an increasing strip creates a
decreasing strip, and the number of breakpoints remains
unchanged.

•  Then the number of breakpoints will be reduced in the
following steps.

0 1 2 7 6 5 4 3 8 9

one
decreasing

strip!

b(π) = 2 3

k k-1

2 7 6 5 4 3

3/28/16 Comp 555 Spring 2016 24

•  If there is no decreasing strip, there may be no
strip-reversal ρ that reduces the number of breakpoints
(i.e. b(π • ρ) ≥ b(π) for any reversal ρ).

•  However, reversing an increasing strip creates a
decreasing strip, and the number of breakpoints remains
unchanged.

•  Then the number of breakpoints will be reduced in the
following steps.

0 1 2 3 4 5 6 7 8 9
DONE!

b(π) = 0

k k-1

2

3/28/16 Comp 555 Spring 2016 25

ImprovedBreakpointReversalSort(π)
1 while b(π) > 0
2 if π has a decreasing strip
3  Among all possible reversals, choose reversal ρ
 that minimizes b(π • ρ)
4 else
5 Choose a reversal ρ that flips an increasing strip in π
6 π ! π • ρ
7 output π
8 return

def improvedBreakpointReversalSort(seq):
 while hasBreakpoints(seq):
 increasing, decreasing = getStrips(seq)
 if len(decreasing) > 0:
 reversal = pickReversal(seq, decreasing)
 else:

 reversal = increasing[0]
 print seq, "reversal", reversal
 seq = doReversal(seq,reversal)

print seq, "Sorted”
return

3/28/16 Comp 555 Spring 2016 26

3/28/16 Comp 555 Spring 2016 27

•  ImprovedBreakPointReversalSort is an approximation
algorithm with a performance guarantee of no worse
than 4
–  It eliminates at least one breakpoint in every two

steps; at most 2b(π) steps
–  Optimal algorithm eliminates at most 2 breakpoints in

every step: d(π) ≥ b(π) / 2
–  Approximation ratio:

Can we obtain a
 better

 performance
 guarantee?

3/28/16 Comp 555 Spring 2016 28

•  If there is a decreasing strip, the next reversal reduces
b(π) by at least one.

•  The only bad case is when there is no decreasing strip,
as then we need a reversal that does not reduce b(π).
–  If we could always choose a reversal reducing b(π) and, at the

same time, yielding a permutation that again has at least one
decreasing strip, the bad case would never occur.

–  If all reversals that reduce b(π) create a permutation without
decreasing strips, then there exists a reversal that reduces b(π)
by two?!

–  When the algorithm creates a permutation without a decreasing strip,
the previous reversal must have reduced b(π) by two.

•  At most b(π) reversals are needed.
•  Approximation ratio: correct?

3/28/16 Comp 555 Spring 2016 29

•  SimpleReversalSort

–  Attempts to maximize
prefix(π) at each step

–  Performance guarantee:

•  ImprovedBreakPointReversalSort
–  Attempts to reduce the number of

breakpoints at each step
–  Performance guarantee: 2

Mouse

Human

Mouse (X chrom.)

Human (X chrom.)

3/28/16 Comp 555 Spring 2016 30

0 1 3 8 7 6 2 4 5 9 10

