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•  We developed a SimpleReversalSort algorithm that sorts 
by extending its prefix on every iteration (n-1) steps. 

•  On            π :  6 1 2 3 4 5 
  Flip 1: 1 6 2 3 4 5 
  Flip 2: 1 2 6 3 4 5  
  Flip 3: 1 2 3 6 4 5 
  Flip 4: 1 2 3 4 6 5 
  Flip 5: 1 2 3 4 5 6 

•  But it could have been sorted in two flips: 

         π :   6 1 2 3 4 5 
   Flip 1:  5 4 3 2 1 6      

      Flip 2:  1 2 3 4 5 6 

We probably don’t want to use
 this algorithm to estimate
 the reversal distance
 between two genomes  
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•  Today’s algorithms find approximate solutions 
rather than optimal solutions 

•  The approximation ratio of an algorithm A on 
input π  is: 
                    A(π) / OPT(π) 
where  
        A(π) - solution produced by algorithm A                 

OPT(π) - optimal solution of the problem 
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• Approximation ratio (performance guarantee) of 
algorithm A: max approximation ratio over all 
inputs of size n 

– For a minimizing algorithm A  (like ours): 
• Approx Ratio = max|π| = n A(π) / OPT(π) ≥ 1.0 

– For maximization algorithms: 
• Approx Ratio = min|π| = n A(π) / OPT(π) ≤ 1.0 
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SimpleReversalSort(π) 
1 for  i ! 1 to n – 1 
2    j ! position of element i in π (i.e., πj = i) 
3    if  j ≠i 
4       π ! π  ρ(i, j) 
5       output π 
6    if π is the identity permutation  
7       return 

approximation
 ratio? 

Step 0: 6 1 2 3 4 5 
Step 1: 1 6 2 3 4 5 
Step 2: 1 2 6 3 4 5  
Step 3: 1 2 3 6 4 5 
Step 4: 1 2 3 4 6 5 
Step 5: 1 2 3 4 5 6 

A(π)? n-1
 OPT(π)? 

Step 0: 6 1 2 3 4 5 
Step 1: 5 4 3 2 1 6 
Step 2: 1 2 3 4 5 6 

any better
 greedy

 algorithms? 
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         π = π1π2π3…πn-1πn

• A pair of neighboring elements π i and π i + 1  
are adjacent if  

                          πi+1 = πi  + 1 
•  For example: 
        π = 1  9  3  4  7  8  2  6  5 

•  (3, 4) or (7, 8) and (6,5) are adjacent pairs 
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Breakpoints occur between neighboring non-
adjacent elements: 

                π = 1  9  3  4  7  8  2  6  5 

•  Pairs  (1,9), (9,3), (4,7), (8,2) and (2,5) define 5 
breakpoints of permutation π 

•  b(π) - # breakpoints in permutation π
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•  One can place two elements π 0 =0 and π n + 1=n+1 at 
the beginning and end of π respectively 

Extending with 0 and 10 

A new breakpoint was created after extending 

π = 1  9  3  4  7  8  2  6  5 

π = 0 1  9  3  4  7  8  2  6  5 10 

An extended permutation of n can have at most  
(n+1) breakpoints, (n-1 between elements plus 2) 
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"  Breakpoints are the bottlenecks for sorting by reversals once 
they are removed, the permutation is sorted. 

"  Each “useful” reversal eliminates at least 1 and at most 2 
breakpoints. 

"  Consider the following application of  
  SimpleReversalSort(Extend(π)): 

π = 2  3  1  4  6  5 
  0  2  3  1  4  6  5  7    
  0  1  3  2  4  6  5  7 
  0  1  2  3  4  6  5  7 
  0  1  2  3  4  5  6  7 

b(π) = 5 
b(π) = 4 
b(π) = 2 
b(π) = 0 

€ 

required
reversals ≥

b(π)
2
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BreakPointReversalSort(π) 
1 while b(π) > 0 
2  Among all possible reversals,    

choose reversal ρ minimizing b(π • ρ) 
3  π ! π • ρ(i, j) 
4  output π
5 return 

Does it always terminate? 

What if no reversal reduces the
 number of breakpoints? 

The “greedy” concept here is to
 reduce as many breakpoints as
 possible 

0  1  2  5  6  7  3  4  8  9 
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• Strip: an interval between two consecutive 
breakpoints in a permutation  
– Decreasing strip: strip of elements in decreasing 

order (e.g. 6 5 and 3 2 ). 
–  Increasing strip: strip of elements in increasing 

order (e.g. 7 8) 

                 0  1  9  4  3  7  8  2  5  6 10  

– A single-element strip can be declared either 
increasing or decreasing. We will choose to 
declare them as decreasing with exception of  
extension strips (with 0 and n+1) 
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If permutation π contains at least one 
decreasing strip, then there exists a 
reversal ρ  which decreases the number 
of breakpoints (i.e. b(π • ρ) < b(π) ). 

How can we be sure
 that we decrease
 the number of
 breakpoints? 

Which
 reversal? 

Consider π = 1 4 6 5 7 8 3 2 

0  1  4  6  5  7  8  3  2  9   b(π) = 5 
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•  Choose the decreasing strip with the smallest 
element k in π  
(it’ll always be the rightmost element of that strip)  

•  Find k – 1 in the permutation  
     (it’ll always be flanked by a breakpoint) 

•  Reverse the segment between k and k-1 

Consider π = 1 4 6 5 7 8 3 2 

0  1  4  6  5  7  8  3  2  9 b(π) = 5 2 1 4  6  5  7  8  3  2 

Thus, removing
 the breakpoint
 flanking k-1  
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Consider π = 1 4 6 5 7 8 3 2 

0  1  2  3  8  7  5  6  4  9 b(π) = 4 1 
reduced by 1! 

•  Choose the decreasing strip with the smallest 
element k in π  
(it’ll always be the rightmost element of that strip)  

•  Find k – 1 in the permutation  
     (it’ll always be flanked by a breakpoint) 

•  Reverse the segment between k and k-1 



3/28/16 Comp 555   Spring 2016 15 

Consider π = 1 4 6 5 7 8 3 2 

0  1  2  3  8  7  5  6  4  9 b(π) = 4 4 3 8  7  5  6  4 

•  Choose the decreasing strip with the smallest 
element k in π  
(it’ll always be the rightmost element of that strip)  

•  Find k – 1 in the permutation  
     (it’ll always be flanked by a breakpoint) 

•  Reverse the segment between k and k-1 
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Consider π = 1 4 6 5 7 8 3 2 

0  1  2  3  4  6  5  7  8  9 b(π) = 2 4 3 

•  Choose the decreasing strip with the smallest 
element k in π  
(it’ll always be the rightmost element of that strip)  

•  Find k – 1 in the permutation  
     (it’ll always be flanked by a breakpoint) 

•  Reverse the segment between k and k-1 
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Consider π = 1 4 6 5 7 8 3 2 

0  1  2  3  4  6  5  7  8  9 b(π) = 2 5 4 6  5 

•  Choose the decreasing strip with the smallest 
element k in π  
(it’ll always be the rightmost element of that strip)  

•  Find k – 1 in the permutation  
     (it’ll always be flanked by a breakpoint) 

•  Reverse the segment between k and k-1 
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Consider π = 1 4 6 5 7 8 3 2 

0  1  2  3  4  5  6  7  8  9 b(π) = 0 

•  Choose the decreasing strip with the smallest 
element k in π  
(it’ll always be the rightmost element of that strip)  

•  Find k – 1 in the permutation  
     (it’ll always be flanked by a breakpoint) 

•  Reverse the segment between k and k-1 

No breakpoints left! 
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0  1  4  6  5  7  8  3  2  9   b(π) = 5 

Consider π = 1 4 6 5 7 8 3 2 

0  1  2  3  8  7  5  6  4  9 b(π) = 4 

0  1  2  3  4  6  5  7  8  9 b(π) = 2 

0  1  2  3  4  5  6  7  8  9 b(π) = 0 

d(π) = 3 

Does it work
 for any

 permutation? 
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•  If there is no decreasing strip, there may be no  
strip-reversal ρ  that reduces the number of breakpoints 
(i.e. b(π • ρ)  ≥ b(π) for any  reversal ρ).  

•  However, reversing an increasing strip creates a 
decreasing strip, and the number of breakpoints remains 
unchanged.  

•  Then the number of breakpoints will be reduced in the 
following steps. 

0  1  2  5  6  7  3  4  8  9 

no  
decreasing  

strips! 
b(π) = 3 

Create one! 

5  6  7 
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•  If there is no decreasing strip, there may be no  
strip-reversal ρ  that reduces the number of breakpoints 
(i.e. b(π • ρ)  ≥ b(π) for any  reversal ρ).  

•  However, reversing an increasing strip creates a 
decreasing strip, and the number of breakpoints remains 
unchanged.  

•  Then the number of breakpoints will be reduced in the 
following steps. 

0  1  2  7  6  5  3  4  8  9 

one 
decreasing  

strip! 

b(π) = 3 5 

k k-1 

4 3  4 
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•  If there is no decreasing strip, there may be no  
strip-reversal ρ  that reduces the number of breakpoints 
(i.e. b(π • ρ)  ≥ b(π) for any  reversal ρ).  

•  However, reversing an increasing strip creates a 
decreasing strip, and the number of breakpoints remains 
unchanged.  

•  Then the number of breakpoints will be reduced in the 
following steps. 

0  1  2  7  6  5  4  3  8  9 

one 
decreasing  

strip! 

b(π) = 2 5 

k k-1 

4 
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•  If there is no decreasing strip, there may be no  
strip-reversal ρ  that reduces the number of breakpoints 
(i.e. b(π • ρ)  ≥ b(π) for any  reversal ρ).  

•  However, reversing an increasing strip creates a 
decreasing strip, and the number of breakpoints remains 
unchanged.  

•  Then the number of breakpoints will be reduced in the 
following steps. 

0  1  2  7  6  5  4  3  8  9 

one 
decreasing  

strip! 

b(π) = 2 3 

k k-1 

2 7  6  5  4  3 
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•  If there is no decreasing strip, there may be no  
strip-reversal ρ  that reduces the number of breakpoints 
(i.e. b(π • ρ)  ≥ b(π) for any  reversal ρ).  

•  However, reversing an increasing strip creates a 
decreasing strip, and the number of breakpoints remains 
unchanged.  

•  Then the number of breakpoints will be reduced in the 
following steps. 

0  1  2  3  4  5  6  7  8  9 
DONE! 

b(π) = 0 

k k-1 

2 
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ImprovedBreakpointReversalSort(π) 
1 while b(π) > 0 
2     if π has a decreasing strip 
3     Among all possible reversals, choose reversal ρ  
                              that   minimizes b(π • ρ) 
4     else 
5        Choose a reversal ρ that flips an increasing strip in π
6   π ! π • ρ
7      output π
8  return 



def improvedBreakpointReversalSort(seq):
    while hasBreakpoints(seq):
        increasing, decreasing = getStrips(seq)
        if len(decreasing) > 0:
                   reversal = pickReversal(seq, decreasing)
        else:

        reversal = increasing[0]
        print seq, "reversal", reversal
        seq = doReversal(seq,reversal)

print seq, "Sorted”
return

3/28/16 Comp 555   Spring 2016 26 



3/28/16 Comp 555   Spring 2016 27 

•  ImprovedBreakPointReversalSort is an approximation 
algorithm with a performance guarantee of no worse 
than 4 
–  It eliminates at least one breakpoint in every two 

steps;  at most 2b(π) steps 
–  Optimal algorithm eliminates at most 2 breakpoints in 

every step: d(π) ≥ b(π) / 2 
–  Approximation ratio: 

Can we obtain a
 better

 performance
 guarantee? 
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•  If there is a decreasing strip, the next reversal reduces 
b(π) by at least one. 

•  The only bad case is when there is no decreasing strip, 
as then we need a reversal that does not reduce b(π). 
–  If we could always choose a reversal reducing b(π) and, at the 

same time, yielding a permutation that again has at least one 
decreasing strip, the bad case would never occur. 

–  If all reversals that reduce b(π) create a permutation without 
decreasing strips, then there exists a reversal that reduces b(π) 
by two?!  

–  When the algorithm creates a permutation without a decreasing strip, 
the previous reversal must have reduced b(π) by two. 

•  At most b(π) reversals are needed. 
•  Approximation ratio:  correct? 
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•  SimpleReversalSort 

–  Attempts to maximize 
prefix(π) at each step 

–  Performance guarantee: 

•  ImprovedBreakPointReversalSort 
–  Attempts to reduce the number of 

breakpoints at each step 
–  Performance guarantee: 2 

Mouse

Human

Mouse (X chrom.) 

Human (X chrom.) 
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0  1  3  8  7  6  2  4  5  9  10 


