Divide and Conquer Algorithms

) Orginal Arist
Reproduction rights obtainable from
wearw, CarfoonStock com

“Really? — my people always
say multiply and conquer.”

« Midterm Wednesday, bring your computer. Make sure it works!
e Problem Set #3
e Grading of Problem Sets #1

http://getfireshot.com/pdf_aHR0cDovL2xvY2FsaG9zdDo4ODg4L3RyZWU=

The Essence of Divide and Conquer

« Divide problem into sub-problems

e Conquer by solving sub-problems recursively.
» If the sub-problems are small enough, solve them in brute force fashion

« Combine the solutions of sub-problems into a solution of the original problem
» This is the tricky part

b, 4

[3s}
=

|-c

http://getfireshot.com/pdf_aHR0cDovL2xvY2FsaG9zdDo4ODg4L3RyZWU=

Divide and Conquer Applied to Sorting

Problem

e Given an unsorted array of items

5/2/4|7|1|3|2|6

« Reorganize them such that they are in non-decreasing order

1/2(2|3|4|5|6|7

http://getfireshot.com/pdf_aHR0cDovL2xvY2FsaG9zdDo4ODg4L3RyZWU=

Mergesort: Divide Phase

Step 1 - Divide

5/2|[4]|7]|1]|3]2]|6

log,(n) divisions to split an array of size n into single elements

. 4

http://getfireshot.com/pdf_aHR0cDovL2xvY2FsaG9zdDo4ODg4L3RyZWU=

Mergesort: Combine Solutions

Merge

e 2 arrays of size 1 can be easily merged to form a sorted array of size 2

512 — |2|5

4|17| - |4|7

2|5||4(7| - [2/4|5|7

 Move the smaller first value of the two arrays to the next slot in the merged array. Repeat.
2 sorted arrays of size p and q can be merged in O(p + @) time to form a sorted array of size

p*q

P 4

http://getfireshot.com/pdf_aHR0cDovL2xvY2FsaG9zdDo4ODg4L3RyZWU=

Mergesort: Conquer Step

Step 2 - Conquer

O(m) | l | l

2(5(14|7|11|3]]2|6
Om) ! !

2(4/5|7||1|2(3|6
O(n) |

12/2/3|4|5|6|7

log,(n) iterations, each iteration takes O(n) time, for a total time O(nlog(n))

P 4

http://getfireshot.com/pdf_aHR0cDovL2xvY2FsaG9zdDo4ODg4L3RyZWU=

Now back to Biology

All algorithms for aligning a pair of sequences thus far have required quadratic
memory

The tables used by the dynamic programming method

m
s

%

e Space complexity for computing alignment path for sequences of length n and m is O(nm)
« We kept a table of all scores and arrival directions in memory to reconstruct the final best
path (backtracking)

http://getfireshot.com/pdf_aHR0cDovL2xvY2FsaG9zdDo4ODg4L3RyZWU=

Computing Alignments with Linear Memory

n<

« If appropriately ordered, the space needed to compute just the score can be reduced to O(n)
« For example, we only need the previous column to calculate the current column, and we can
throw away that previous column once we’re done using it

http://getfireshot.com/pdf_aHR0cDovL2xvY2FsaG9zdDo4ODg4L3RyZWU=

Recycling Columns

Only two columns of scores are needed at any given time

dlIhd [212 [[«]lF
il v il
1 | . i1
¥ T|'| M |' 14 !|'
| | 1 10 L
vl | v v
| | M L]
—— T
" memory for column memory for column
1isusedto 2 isused to
calculate column 3 calculate column 4

b, 4

[1E]
£
=

|.:f

http://getfireshot.com/pdf_aHR0cDovL2xvY2FsaG9zdDo4ODg4L3RyZWU=

Suppose that we reverse the source and destination of our Manhattan Tour

An Aside

e Does the path with the most attractions change?

®

NE\

N

\\

'8

vz
%l

/ﬁ/

COr {

1 1/1A4/]

O

N

N

NN

N

N
Ad

N\

N

/,;’/ i%,i/ :’

N]

O

AN

T
et

e

9, L

L=

10

http://getfireshot.com/pdf_aHR0cDovL2xvY2FsaG9zdDo4ODg4L3RyZWU=

More Aside

Now suppose that we made two tours

e One from the source towards the destination
e A second from the destination of towards the source
e And we stop both tours at the middle column

@ Fin fi i ! @ i Fn”
L % o Y

® ‘\ \ o I\ \
E‘\ { {‘\ o F Fay
5! O (® 0} O ,, 0}
\ = \ \ "\ © "\
L P Faa et Ny o
3 X &

NN

L%
O O @ O O O Sre

E
A/

11/
iV

« Can we combine these two separate solutions to find the overall best score?

11

http://getfireshot.com/pdf_aHR0cDovL2xvY2FsaG9zdDo4ODg4L3RyZWU=

A D&C Approach to find the best Alignment
score

/2 m

Prefix(i)/
n
Suffix(i)

« We want to calculate the longest path from (0,0) to (n,m) that passes through (i,m/2) where
1 ranges from 0 to n and represents the i-th row

e Define Score(i) as the score of the path from (0,0) to (n,m) that passes through vertex (i,
m/2)

http://getfireshot.com/pdf_aHR0cDovL2xvY2FsaG9zdDo4ODg4L3RyZWU=

Finding the Midline

Define (mid,m/2) as the vertex where the best score crosses the middle column.

/2 m

1 = mid

/

Prefix(i)
Suffix(i)

« How hard is the problem compared to the original DP approach?
e What does it lack?

http://getfireshot.com/pdf_aHR0cDovL2xvY2FsaG9zdDo4ODg4L3RyZWU=

We know the Best Score

How do we find the best path?

 We actually know one vertex on our path, (m/2, mid).
 How do we find more?

m/2 3m/4

« Hint: Knowing mid actually constrains where the paths can go

. 4

14

http://getfireshot.com/pdf_aHR0cDovL2xvY2FsaG9zdDo4ODg4L3RyZWU=

's Mid
id's
AM

)
(m,n
id) to

/2, mi

d (m

id) an

2, mi

(0,0) to (m/

0,

from

aths

the p

for

lve

SO

Now

We can

15

http://getfireshot.com/pdf_aHR0cDovL2xvY2FsaG9zdDo4ODg4L3RyZWU=

And Mid-Mid's Mids (recursively)

And repeat this process until the path is from (i,j) to (i,j)

0 m/8 m/4 3m/8 m/2 5m/8 3m/4 7m/8 m

16

http://getfireshot.com/pdf_aHR0cDovL2xvY2FsaG9zdDo4ODg4L3RyZWU=

's Performance

Algori

« On first level, the algorithm fills every entry in the matrix, thus it does O(nm) work

B
L

.

!

17

TEVIOUS

http://getfireshot.com/pdf_aHR0cDovL2xvY2FsaG9zdDo4ODg4L3RyZWU=

Work done on a second pass

« On second level, the algorithm fills half the entries in the matrix, thus it does O(nm)/2 work

m/2

18

http://getfireshot.com/pdf_aHR0cDovL2xvY2FsaG9zdDo4ODg4L3RyZWU=

Work done on an Alternate second pass

 This is true regardless of what mid is

m/2

19

http://getfireshot.com/pdf_aHR0cDovL2xvY2FsaG9zdDo4ODg4L3RyZWU=

Work done on a third pass

e On the third level, the algorithm fills a quarter of the entries in the matrix, thus it does

O(nm)/4 work

http://getfireshot.com/pdf_aHR0cDovL2xvY2FsaG9zdDo4ODg4L3RyZWU=

Sum of a Geometric Series

1+Ve+ ¥+ ...+ (W)k<2

h .
Runtime: O[M= O(Hm} 5! pass: 1/16

Total Space: O(n) for score computation, O(n+m) to store the optimal
alignment

21

http://getfireshot.com/pdf_aHR0cDovL2xvY2FsaG9zdDo4ODg4L3RyZWU=

Can We Do Even Better?

e Align in Subquadratic Time?

 Dynamic Programming takes O(nm) for global alignment, which is quadratic assuming n =
m

e Yes, using the Four-Russians Speedup

4

2

http://getfireshot.com/pdf_aHR0cDovL2xvY2FsaG9zdDo4ODg4L3RyZWU=

Partitioning the Alignment Grid

Into smaller blocks

=
m!
]

>

23

http://getfireshot.com/pdf_aHR0cDovL2xvY2FsaG9zdDo4ODg4L3RyZWU=

Block Logic

« How does a block relate to a correct alignment?

» the alignment path passes through block
» the path does not use the block

« The alignment passes through O(n/t) total blocks

e Paths enter from the top or left and exit from the right or bottom
« If we know the best score at the boundaries, perhaps we can peice together a solution as we

did before.

24

http://getfireshot.com/pdf_aHR0cDovL2xvY2FsaG9zdDo4ODg4L3RyZWU=

Recall our Bag of Tricks

e A key insight of dynamic programming was to reuse repeated computations by storing them
in a tableau
e Are there any repeated computations in Block Alignments?

e Let’s check out some numbers...

= Letsassumen=m = 4000 andt=4

» n/t = 1000, so there are 1,000,000 blocks

» How many possible many blocks are there?
o Assume we are aligning DNA with DNA, so there sequences are over an alphabet of {A,C,G,T}
o Possible sequences are 4t = 44 = 256,
o Possible alignments are 4t x 4t = 65536

e There are fewer possible alignments than blocks, thus we must be frequently revisiting block
alignments!

25

http://getfireshot.com/pdf_aHR0cDovL2xvY2FsaG9zdDo4ODg4L3RyZWU=

