The Realities of Genome Assembly

”—‘}jm" S
s INTERPRETATNN | | —"
- 3 KO

&
L g
Y

-' .5 -i'"? 1{
m"«i ,uﬁ?‘

\ J\-L;, zrh

L
» ; rj 3 I
‘ e ';'\ & a 9
3 7 He Y L on

e Problem Set #2 is posted

http://getfireshot.com/pdf_aHR0cDovL2xvY2FsaG9zdDo4ODg4L3RyZWU=

From Last Time

What we learned from a related "Minimal Superstring"” problem

e Can be constructed by finding a Hamiltonian path of an n-dimensional De Bruijn graph over k symbols
= Brute-force method is explores all V! paths through V vertices
» Branch-and-Bound method considers only paths composed of edges
» Finding a Hamiltonian path is an NP-complete problem
o There is no known method that can solve it efficiently as the number of vertices grows

e Can be constructed by finding a Eulerian path of a (n—1)-dimensional De Bruijn graph.

= Euler's method finds a path using all edges in O(E) = O(V?) steps
» Graph must statisfy contraints to be sure that a solution exists

o All but two vertices must be balanced

o The other two must be semi-balanced

http://getfireshot.com/pdf_aHR0cDovL2xvY2FsaG9zdDo4ODg4L3RyZWU=

Applications to Assembling Genomes

Multiple Copies of a Genome

High Coverage Low Coverage

Consensus Sequence

« Extracted DNA is broken into random small fragments
e 100-200 bases are read from one or both ends of the fragment
« Typically, each base of the genome is covered by 10x - 30x fragments

http://getfireshot.com/pdf_aHR0cDovL2xvY2FsaG9zdDo4ODg4L3RyZWU=

Genome Assembly vs Minimal Superstring

e Mininmal substring problem
» Every k-mer are known and used as a vertex, (all o)
» Paths, and there may be multiple, are solutions

e Read fragments

= No guarentee that we will see every k-mer
» Can't disambiguate repeats

z
h 4

[l
[ax]
=

|Z¥-S

http://getfireshot.com/pdf_aHR0cDovL2xvY2FsaG9zdDo4ODg4L3RyZWU=

A small "Toy" example

GACGGCGGCGCACGGCGCAA - Our toy sequence from 2 lectures ago
GACGG CGCAC
ACGGC GCACG
CGGCG CACGG - The complete set of 16 5-mers
GGCGG ACGGC
GCGGC CGGCG
CGGCG GGCGC
GGCGC GCGCA
GGCGA CGCAA

e All k-mersis equivalent to kx coverage
e Four repeated k-mers {ACGGC, CGGCG, GCGCA, GGCGC}

4

http://getfireshot.com/pdf_aHR0cDovL2xvY2FsaG9zdDo4ODg4L3RyZWU=

Some Code

e First let's add a function to uniquely label repeated k-mers

def kmersUnique(seq, k):

kmers = sorted([seq[i:i+k] for i in xrange(len(seq)-k+1)])
for i in xrange(1,len(kmers)):
if (kmers[i] == kmers[i-1][0@:k]):
t = kmers[i-1].find('_"')

if (t >= 0):
n = int(kmers[i-1][t+1:]) + 1
kmers[i] = kmers[i] + "_" + str(n)
else:

kmers[i-1] = kmers[i-1] + "_1"
kmers[i] = kmers[i] + "_2"
return kmers

kmers = kmersUnique("GACGGCGGCGCACGGCGCAA", 5)
print kmers

['ACGGC_1', 'ACGGC_2', 'CACGG', 'CGCAA', 'CGCAC', 'CGGCG_1',
GCGC_1', 'GGCGC_2', 'GGCGG']

'CGBCB_2', 'CGGCE_3',

' GACGG ',

'GCACG',

'GCGCA_1',

'GCGCA_2',

'GCGGC',

'G

http://getfireshot.com/pdf_aHR0cDovL2xvY2FsaG9zdDo4ODg4L3RyZWU=

Our Graph class from last lecture

import itertools

class Graph:
def _ init_ (self, vlist=[]):
""" Initialize a Graph with an optional vertex list """
self.index = {v:i for i,v in enumerate(vlist)}
self.vertex = {i:v for i,v in enumerate(vlist)}
self.edge = []
self.edgelabel = []
def addVertex(self, label):
""" Add a labeled vertex to the graph """
index = len(self.index)
self.index[label] = index
self.vertex[index] = label
def addEdge(self, vsrc, vdst, label='', repeats=True):
""" Add a directed edge to the graph, with an optional label.
Repeated edges are distinct, unless repeats is set to False. """
e = (self.index[vsrc], self.index[vdst])
if (repeats) or (e not in self.edge):
self.edge.append(e)
self.edgelabel.append(label)
def hamiltonianPath(self):
""" A Brute-force method for finding a Hamiltonian Path.
Basically, all possible N! paths are enumerated and checked
for edges. Since edges can be reused there are no distictions
made for *which* version of a repeated edge. """
for path in itertools.permutations(sorted(self.index.values())):
for 1 in xrange(len(path)-1):
if ((path[i],path[i+1]) not in self.edge):
break
else:
return [self.vertex[1i] for i in path]
return []
def SearchTree(self, path, verticesLeft):
""" A recursive Branch-and-Bound Hamiltonian Path search.

Dathe area avtendad nna nnda at a tima ucina nnly availahle

http://getfireshot.com/pdf_aHR0cDovL2xvY2FsaG9zdDo4ODg4L3RyZWU=

Finding Paths in our K-mer De Bruijn Graphs

k =5
target = "GACGGCGGCGCACGGCGCAA"
kmers = kmersUnique(target, k)
Gl = Graph(kmers)
for vsrc in kmers:
for vdst in kmers:
if (vsrc[1:k] == vdst[0:k-1]):
G1l.addEdge(vsrc, vdst)
path = G1l.hamiltonianPathVv2()

print path

seq = path[0][0:k]

for kmer in path[1:]:
seq += kmer[k-1]

print seq

print seq == target

['GACGG', 'ACGGC_1', 'CGGCG_1', 'GGCGC_1',
'"GCGCA_2', 'CGCAA']

GACGGCGCACGGCGGCGCAA

False

'GCGCA_1',

'CGCAC',

'"GCACG ',

'CACGG',

' ACGGC_2',

'CGGCG_2',

'GGCGG',

'GCGGC',

'CGGCG_3',

'GGCGC_2',

Not what we Expected

ACGGC_1

CGCAC >

L7

ACGGC 2

<

(l'iA(‘G{])

GCGGC

it 2 IS Yra

The one started with

7

flocc
s

ACGGC_1

CGCAC >

The one we found

ACGGC 2

<

GACGG

GCGGC

What's the Problem?

There are many possible Hamiltonian Paths

How do they differ?

» There were two possible paths leaving any [CGGCG] node
o [CGGCG] -~ [GGCGC]
o [CGGCG] - [GGCGG]

» A valid solution can be found down either path
There might be even more solutions

Genome assembly is not as ambiguous as the Minimal Substring problem

4

10

How about an Euler Path?

k =5

target = "GACGGCGGCGCACGGCGCAA"
kmers = kmersUnique(target, k)
print kmers

nodes = sorted(set([code[:k-1] for code in kmers] + [code[l1:k] for code in kmers]))
print nodes
G2 = Graph(nodes)
for code in kmers:
G2.addEdge(code[:k-1],code[1:k], code)
path = G2.eulerianPath()
print path
path = G2.eulerEdges(path)
print path

seq = path[0][0:k]

for kmer in path[1:]:
seq += kmer[k-1]

print seq

print seq == target

['ACGGC_1', 'ACGGC_2', 'CACGG', 'CGCAA', 'CGCAC', 'CGGCG_1', 'CGGCG_2', 'CGGCG_3', 'GACGG', 'GCACG', 'GCGCA_1', 'GCGCA_2', 'GCGGC', 'GGCGC_1',
'GGCGC_2', 'GGCGG']

['ACGG', 'CACG', 'CGCA', 'CGGC', 'GACG', 'GCAA', 'GCAC', 'GCGC', 'GCGG', "GGCG']

(4. 9 B 8. 8 3. 0 7 7 6; L8 % 9 7. 3. 5]

['GACGG', 'ACGGC_2', 'CGGCG_3', 'GGCGG', 'GCGGC', 'CGGCG_2', 'GGCGC_2', 'GCGCA_2', 'CGCAC', 'GCACG', 'CACGG', 'ACGGC_1', 'CGGCG_1', 'GGCGC_1',
'GCGCA_1', 'CGCAA']

GACGGCGGCGCACGGCGCAA

True

11

The k-1 De Bruijn Graph with k-mer edges

« We got the right answer, but we were lucky.
e There is a path in this graph that matches the Hamiltonian path that we found before

12

What are the Differences?

GACG
l.ﬁ.—\{'tli
ACGG
ACGGC ‘lﬁﬁc_: \
CGGC
I0GGCG_2 13.06G0G_A
2n-:I
GGCG 12 GOGGC
loop
ﬁ-l. fit]th: 1 -
loop
GCGC GCGG

@jm -
CGCA
m.cnic‘.-\NTac

I CACTG

GCAA GCAC
wﬂcﬂ /
CACG

130GGOG_1

14.GGOCC |

l.ﬂ:\t‘ﬁ]

ACGG

12ACGGC_) T ACGGC_2

CGGC

h.l‘{i{i{'ﬂiﬁi{‘u_}
1st
GGCG
loop

f[i{iﬂ.i{' F 4 GO

15.G0GCA_] RGOGCA 2

CGCA

16 CGCAN S CGCAC

GCAA

gnd
loop
GCAC
w ACG /

CACG

11 .CACGO

« How might we favor one solution over the other?

13

Choose a bigger k-mer

k = 8
target = "GACGGCGGCGCACGGCGCAA"
kmers = kmersUnique(target, k)
print kmers
nodes = sorted(set([code[:k-1] for code in kmers] + [code[1:k] for code in kmers]))
print nodes
G3 = Graph(nodes)
for code in kmers:
G3.addEdge(code[:k-1],code[1:k], code)
path = G3.eulerianPath()
print path
path = G3.eulerkdges(path)
print path

seq = path[0][0:k]

for kmer in path[1:]:
seq += kmer[k-1]

print seq

print seq == target

["ACGGCGCA', 'ACGGCGGC', 'CACGGCGC', 'CGCACGGC', 'CGGCGCAA', 'CGGCGCAC', 'CGGCGGCG', 'GACGGCGG', 'GCACGGCG', 'GCGCACGG', 'GCGGCGCA', 'GGCGCAC
G', 'GGCGGCGC']

['ACGGCGC', 'ACGGCGG', 'CACGGCG', 'CGCACGG', 'CGGCGCA', 'CGGCGGC', 'GACGGCG', 'GCACGGC', 'GCGCACG', 'GCGGCGC', 'GGCGCAA', 'GGCGCAC', 'GGCGGC
G']

[6: A 5 95 5, & a8 8. B P 8. 6 A i)

['GACGGCGG', 'ACGGCGGC', 'CGGCGGCG', 'GGCGGCGC', 'GCGGCGCA', 'CGGCGCAC', 'GGCGCACG', 'GCGCACGG', 'CGCACGGC', 'GCACGGCG', 'CACGGCGC', '"ACGGCGC
A', 'CGGCGCAA']

GACGGCGGCGCACGGCGCAA

True

14

Advantage of larger k-mers

« Making k larger (8) eliminates the second choice of loops
« There are edges to choose from, but they all lead to the same path of vertices

GACGHGUG

l GACGGOGE

ACGGOGE GCGGOGE

x"“\-\-..
/' w&t'titjt'{i{'ﬁ ﬁ{.'litjt'[it'ﬁ
‘x“‘.
COOCGCA
@;ﬁ' \QC:PGWCAA
GGOGCAC GGCGCAA
LE LR)

17

GOGCACG

jE.GCGCACGG

COCACGH

&[?.[‘{E{'At‘{i{i-{'
GCACGGC
\ ’/ﬂmcmm
CACGHOG

15

Applied to the Hamiltonian Solution

k =8
target = "GACGGCGGCGCACGGCGCAA"
kmers = kmersUnique(target, k)
G4 = Graph(kmers)
for vsrc in kmers:
for vdst in kmers:
if (vsrc[1l:k] == vdst[0:k-1])
G4 .addedge(vsrc, vdst)
path = G4.hamiltonianPathVv2()

print path

seq = path[0][0:k]

for kmer in path[1:]:
seq += kmer[k-1]

print seq

print seq == target

['GACGGCGG', 'ACGGCGGC', 'CGGCGGCG',
A', 'CGGCGCAA']
GACGGCGGCGCACGGCGCAA

True

'GGCGGCGC'

r

'"GCGGCGCA',

'CGGCGCAC',

'"GGCGCACG',

'"GCGCACGG',

'CGCACGGC',

'"GCACGGCG',

'"CACGGCGC',

'ACGGCGC

16

Graph with 8-mers as vertices

e There is only one Hamiltonian path
e There are no repeated k-mers

17

Assembly in Reality

e Problems with repeated k-mers

» We can't distinguish between repeated k-mers
o Recall we knew from our example that were {2: ACGGC, 3:CGGCG, 2:GCGCA, 2:GGCGC}
o Assembling path without repeats:

k =5
target = "GACGGCGGCGCACGGCGCAA"
kmers = set([target[i:i+k] for i in xrange(len(target)-k+1)])
nodes = sorted(set([code[:k-1] for code in kmers] + [code[1:k] for code in kmers]))
G5 = Graph(nodes)
for code in kmers:
G5.addEdge(code[:k-1],code[1:k], code)

print sorted(G5.vertex.items())
print G5.edge

[(®, "ACGG'); (1, 'CACG'), (2, 'CBCA'), (3, "CGBC'); [4, "GACG'), (5, 'GCAA'); (6, "BCAC'), (7,
[(v, 2), (1, o), (2, 6), (9, 8), (4, 0), (3, 9), (0, 3), (9, 7), (6, 1), (2, 5), (8, 3)]

'GCGC'), (8,

'GCGG'), (9,

'GGCG")]

18

Resulting Graph with "distinct"” 5-mers as edges

GCAA
s GCAC
GCA
COCAC ¥ e GCACS
CACG
o CACG\
GCGC ACGG #3rGG0ACG
GO AC(J(/
CGGCG O
GCGGC
Gacm /'
GCGG

e There is no single Euler Path
« But there are is a set of paths that covers all edges ['GACGGCG', 'GGCGGC', 'GGCGCA', 'CGCAA', 'CGCACGG']

» Extend a sequence from a node until you reach a node with an out-degree > in-degree
= Save these partially assembled subsequences, call them contigs
= Start new contigs following each out-going edge at these branching nodes

19

Next assemble contigs

« Use a modified read-overlap graph to assemble these contigs
» Add edge-weights that indicate the amount of overlap

GACGGCG

\’
CGCAA CGCACGG

e Usually much smaller than the graph made from k-mers
e Find Hamiltonian paths in this smaller graph

2

20

Discussion

No simple single algorithm for assembling a real genome sequences

Generally, an iterative task

» Choose a k-mer size, ideally such that no or few k-mers are repeated

» Assemble long paths (contigs) in the resulting graph

» Use these contigs, if they overlap suffciently, to assemble longer sequences
Truely repetitive subsequences are a challenge

» Leads to repeated k-mers and loops in graphs in the problem areas
» Often we assemble the "shortest” version of a genome consistent with our k-mer set

Things we've ignored

» QOur k-mers are extracted from short read sequences that may contain errors
» Our short read set could be missing entire segments from the actual genome
» QOur data actually supports 2 paths, one through the primary sequence, and a second through it again in reverse complement order.

21

