Finding TFBS Motifs in our Lifetime

- Recall from last time that the *Brute Force* approach for finding a common 10-mer motif common to 10 sequences of length 80 bases was going to take up roughly 30,000 years
- Today well consider alternative and non-obvious approaches for solving this problem
- We will trade one old man (us) for another (an Oracle)
Recall from last Lecture

- The following set of 10 sequences have an embedded noisy motif, TAGATCCGAA.

1. tagtggcttttgagtgTAGATCTGAAaggaaagtatatcaccaggcttcgaggtcagctcgaggtgacttaat
2. cgccgactgctgctccagttatcgcaagcctagaccaaaacggagtTGGATCCGAAactggagtttaatcggagtccttt
3. gttactttgtagcctggtTAGACTCCGAAatataatggtggctgctcatgccaagctgctacatacagtaagggaaatgctgt
4. aacatcaggttttgattaacaaattttaagcagcTAAATCCGAAattgacctgatgacaaatacgcacagtgcggttcgggcggg
5. accacgagattaggcttttatAGATCCGAAAagttaggtatcgtataaatggctcagccatgtcaatgtgcgcatctccac
6. TAGATTCGAAatcatcgtttttctctctgtggtaaaggggttgccagctttgtcctagctgtcagtgcgcatgtgccgaacttttgaacc
7. gaaatggttcttggtgctgcatatcaggccgctttccttttaatggtgcgtgCAGATCCGAAcgctcttgagggtgctgtgcgctagta
8. atgtataactagacattctacagtctctgtctattggcggagaccatctttgtctccactacaagaggtactctgtgTAGATCCGTA
9. ttcctaacacctctctctTAGATCCGAAacctgggctgccatctctttctctctgtgactttgctctctgtctgtactacagctgTCGATCCGAAatttcg
10. ctacctatatgtaaaacaatctactaagcagtgtcgggtctttgtcctgtacctgctccatgagtacg
Consensus Scoring Function

- We developed a consensus scoring function to address noise
- But, we needed to apply it an exponential number, $O(N^t)$ of times!
- Here's the scoring function...

```python
def Score(s, DNA, k):
    ""
    compute the consensus SCORE of a given k-mer
    alignment given offsets into each DNA string.
    s = list of starting indices, 1-based, 0 means ignore
    DNA = list of nucleotide strings
    k = Target Motif length
    ""
    score = 0
    for i in xrange(k):
        # loop over string positions
        cnt = dict(zip("acgt", (0,0,0,0)))
        for j, sval in enumerate(s):
            # loop over DNA strands
            base = DNA[j][sval+1]
            cnt[base] += 1
            score += max(cnt.itervalues())
    return score
```
And here's the Score we're looking for...

seqApprox = [
 'tagtggttttgagtgtagatctgaaggaaagatatttccaccagttcgggtcaccacgcagggcaggggtgacttaat',
 'cgacgtcgcgcctcagttatacgcaagttaagcaaaacggagttgagttcggaaactgggaattgacaattctctcttt',
 'gttacttgtgagctggttagaggcaagtaataatttggttggtgctgcatagcgagctgacatagctgtagagggaatgcgt',
 'aaccaggggttttagaatttaaaccagcagtaaatcgcgaatgctgacatgcaaaatccgaaatgcagggacagttcgggg',
 'accacccggataggggtcttatttaggtccaaagtgattgtagtactgtaatataatggctagccatgccttgctgtaggtcgcctcacc',
 'tagatctccagatcgtcctttctctctgttggtaacacggggttcgggaccttcgctgcagatgcgaaccacattgttacc',
 'gaatagttgcgtggtggatactcagggccgttctctttaatgctgaggggtctgctgcctgtc',
 'atgtatattagagcacgattttttaacgcgtcgtttcpgggagagctgacccagctgctgctgagaatcccttgctgcgtagc',
 'tttacatctcttccttttagatctccaaaccttctgttggccggactctcctctctctctctgtgacactcttttctgtctgactgac',
 'ctacctatgtaaacaaaatctactaaccgtagtccgggtttctctctgtgctctgtcgcctaaacctacaggtcgtcgcctgagtaaccctgcag',
]

```
print Score([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], seqApprox, 10)
```

```
89
```

```
%timeit Score([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], seqApprox, 10)
```

```
10000 loops, best of 3: 44.6 µs per loop
```

So even at a blazing 44µs we'll need many lifetimes to compute the 70^{10} scores
Pruning Trees

- One method for reducing the computational cost of a search algorithm is to prune the space of permutations that could not possibly lead to a better answer than the current best answer.

- Pruning decisions are based on solutions to subproblems that appear early on and offer no hope.

- How does this apply to our Motif finding problem?

Consider any permutation of offsets that begins with the indices [25, 63, 10, 43, ...]. Just based on the first 4 indices the largest possible score is 17 + 6*10 = 87, which assumes that all 6 remaining strings match perfectly at all 10 positions.

DNA[0][25:35]	a a g g g g a a a g t
DNA[1][63:73]	g t t t a a t c g g
DNA[2][10:20]	a g c c t g g t t a
DNA[3][43:53]	t t g a c c t g a t

a [2, 1, 0, 1, 1, 1, 1, 1, 1, 1]
c [0, 0, 1, 1, 1, 0, 1, 0, 0]
g [1, 1, 2, 1, 1, 1, 1, 1, 2, 1]
t [1, 2, 1, 1, 1, 0, 2, 1, 1, 2]
[2, 2, 2, 1, 1, 2, 2, 1, 2, 2] Score = 17

If the best answer so far is 89, there is no need to consider the 70^6 offset permutations that start with these 4 indices.
• Our standard method for enumerating permutations can be considered as a traversal of leaf nodes in a search tree.
• Suppose after checking the first few offsets could know already that any score of children nodes could not beat the best score seen so far?
Branch-and-Bound Motif Search

- Since each level of the tree goes deeper into search, discarding a prefix discards all following branches.
- This saves us from looking at $(N-k+1)^{t-depth}$ leaves.
- Note our enumeration of tree-branches is depth-first.
- We'll formulate of trimming algorithm as a recursive algorithm.
A Recursive Exploration of a Search Tree

def exploreMotifs(DNA,k, path, bestScore):
 """ Search for a k-length motif in the list of DNA sequences by exploring all paths in a search tree. Each call extends path by one. Once the path reaches the number of DNA strings a score is computed. """

global bestAlignment, prunedPaths

depth = len(path)
t = len(DNA)
if (depth == t):
 s = Score(path, DNA, k)
 if (s > bestScore):
 bestAlignment = [p for p in path]
 return s
else:
 return bestScore

Let's consider if an optimistic best score can beat the best score so far
if (depth > 1):
 OptimisticScore = k*(t-depth) + Score(path, DNA, k)
else:
 OptimisticScore = k*t

[17, 47, 18, 33, 21] 44 2104245
CPU times: user 1min 34s, sys: 223 ms, total: 1min 34s
Wall time: 1min 34s
Observations

- For our problem instance, Branch-and-Bound Motif finding is significantly faster
 - It found a motif in the first 6 strings in less time than the Brute Force approach found a solution in the first 4 strings
 - More than $70^2 \approx 5000$ times faster
 - It did so by trimming more than 8 Million paths
 - Trimming added extra calls to Score (basically doubling the worst-case number of calls), but ended up saving even more *hopeless* calls along longer paths.
 - In practice, Branch-and-Bound, significantly improved the average performance

- Does this improve the worst-case performance from $O(tkN^4)$?
 - What if all of our motifs were found at the end of each DNA string?
 - How do we avoid these worse case data sets?
 - Randomize the search-tree tranversal order
We need a new approach

- Enumerating every possible permutation of motif positions is still not getting us the speed we want.
- Let’s try another tried and tested approach to algorithm design, mixing up the problem
 - Suppose that some Oracle could tell us what the motif is
 - How long would it take us to find its position in each string?
 - We could compute the Hamming Distance from our given motif to the k-mer at every position of each DNA sequence and keep track of the smallest distance and its position on each string.
 - These positions are our best guess of where the motif can be found on each string.
- Let’s this approach to scanning-and-scoring a given motif.
def ScanAndScoreMotif(DNA, motif):
 totalDist = 0
 bestAlignment = []
 k = len(motif)
 for seq in DNA:
 minHammingDist = k + 1
 for s in xrange(len(seq)-k+1):
 HammingDist = sum([1 for i in xrange(k) if motif[i] != seq[s+i]])
 if (HammingDist < minHammingDist):
 bestS = s
 minHammingDist = HammingDist
 bestAlignment.append(bestS)
 totalDist += minHammingDist
 return bestAlignment, totalDist

print ScanAndScoreMotif(seqApprox, "tagatccgaa")
%timeit ScanAndScoreMotif(seqApprox, "tagatccgaa")

([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11)
1000 loops, best of 3: 1.39 ms per loop

Wow, we can test over 500 motifs per second!
There are $t(N - k + 1)$ positions to test the motif, and each test requires k tests.
- So each scan is $O(tNk)$.

- So where do we get candidate motifs?
- Can we try all of them? There are $4^{10} = 1048576$ in our example.
 - Do the math, 1048576 motifs \times 2 mS \approx 35 mins
 - Not fast, but less than a lifetime

- This approach is called a **Median String Motif Search**
- Recall from last Lecture that a string that minimizes *Hamming distance* is like finding a middle or median string that is closer to all instances than the instances are to each other.
import itertools

def MedianStringMotifSearch(DNA, k):
 """ Consider all possible 4**k motifs"""
 bestAlignment = []
 minHammingDist = k*len(DNA)
 kmer = '
 for pattern in itertools.product('acgt', repeat=k):
 motif = ''.join(pattern)
 align, dist = ScanAndScoreMotif(DNA, motif)
 if (dist < minHammingDist):
 bestAlignment = [p for p in align]
 minHammingDist = dist
 kmer = motif
 return bestAlignment, minHammingDist, kmer

%time MedianStringMotifSearch(seqApprox, 10)

CPU times: user 26min 35s, sys: 613 ms, total: 26min 35s
Wall time: 26min 35s

([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa')

Should we declare victory and move on? Do you find anything uncomfortable about an algorithm that requires $O(tNk^k)$ steps?
Notes on Median String Motif Search

- Similarities between finding and alignment with minimal Hamming Distance and maximizing a Motif's consensus score.
- In fact, if instead of counting mismatches as in the code fragment:

 \[\text{HammingDist} = \text{sum}([1 \text{ for } i \text{ in } \text{xrange}(k) \text{ if } \text{motif}[i] \neq \text{seq}[s+i]]) \]

 we had counted matches

 \[\text{Matches} = \text{sum}([1 \text{ for } i \text{ in } \text{xrange}(k) \text{ if } \text{motif}[i] == \text{seq}[s+i]]) \]

 and found the \textit{maximum(TotalMatches)} instead of the \textit{min(TotalHammingDistance)} we would be using the same measure as \textit{Score}().
- Thus, we expect \textit{MedianStringMotifSearch()} to give the same answer as either \textit{BruteForceMotifSearch()} or \textit{BranchAndBoundMotifSearch()}.
- However, the \(4^k\) term raises some concerns. If \(k\) were instead 20, then we'd have to Scan-and-Score more than \(10^{12}\) times. Another \textit{not-in-a-lifetime} algorithm
- We can also apply the \textit{Branch-and-Bound} approach to the Median string method, but, as before it would only improve the average case.
Other ways to guess the motif?

- If we *knew* that the motif that we are looking for was contained *somewhere* in our DNA sequences we could test the \((N - k + 1)t\) motifs from our DNA, giving a \(O(N^2 t^2)\) algorithm.

- Unfortunately, as you may recall our motif did not appear actually appear in our data.

- You could keep track of a few good *motif candidates* using a manageable and perhaps random subsets of the given DNA sequences, and use them as your candidate motifs.
Let's try considering only Motifs seen in the DNA

```python
def ContainedMotifSearch(DNA, k):
    """ Consider only motifs from the given DNA sequences""
    motifSet = set()
    for seq in DNA:
        for i in xrange(len(seq)-k+1):
            motifSet.add(seq[i:i+k])
    print "%d Motifs in our set" % len(motifSet)
    bestAlignment = []
    minHammingDist = k*len(DNA)
    kmer = '
    for motif in motifSet:
        align, dist = ScanAndScoreMotif(DNA, motif)
        if (dist < minHammingDist):
            bestAlignment = [s for s in align]
            minHammingDist = dist
            kmer = motif
    return bestAlignment, minHammingDist, kmer

%time ContainedMotifSearch(seqApprox, 10)
```

709 Motifs in our set
CPU times: user 1.33 s, sys: 16 ms, total: 1.34 s
Wall time: 1.33 s

([17, 31, 18, 33, 21, 0, 46, 70, 16, 65], 17, 'tagatccaaa')

Not exactly the motif we were looking for (off by a 'g'), [17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa', but boy was it fast! Where's a good Oracle when you need one?
Insights from the consensus score matrix

If we call Score([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], seqApprox, 10)

```
DNA[0][17:27]  t a g a t c t g a a
DNA[1][31:41]  t a g a c c a a a a
DNA[2][18:28]  t a g a c c c g a a
DNA[3][33:43]  t a a a a t c c g a a
DNA[4][21:31]  t a g g t c c a a a
DNA[5][ 0:10]  t a g a t t c g a a
DNA[6][46:56]  c a g a t c g g a a
DNA[7][70:80]  t a g a t c c g t a
DNA[8][16:26]  t a g a t c c a a a
DNA[9][65:75]  t c g a t c c g a a
```

\[
\begin{array}{cccccccccc}
0 & 9 & 1 & 9 & 0 & 0 & 1 & 3 & 9 & 10 \\
1 & 1 & 0 & 0 & 2 & 9 & 8 & 0 & 0 & 0 \\
0 & 0 & 9 & 1 & 0 & 0 & 7 & 0 & 0 & 0 \\
9 & 0 & 0 & 0 & 8 & 1 & 1 & 0 & 1 & 0 \\
9 & 9 & 9 & 9 & 8 & 9 & 8 & 7 & 9 & 10 \\
\end{array}
\]

Consensus t a g a t c c g a a Score = 87

Any Ideas?
def Consensus(s, DNA, k):
 """ compute the consensus k-Motif of an alignment given offsets into each DNA string.
 s = list of starting indices, 1-based, \emptyset means ignore, DNA = list of nucleotide strings,
 k = Target Motif length """
 consensus = ''
 for i in xrange(k):
 # loop over string positions
 cnt = dict(zip("acgt",(0,0,0,0)))
 for j, sval in enumerate(s):
 # loop over DNA strands
 base = DNA[j][sval+i]
 cnt[base] += 1
 consensus += max(cnt.iteritems(), key=lambda tup: tup[1])[0]
 return consensus

def ContainedConsensusMotifSearch(DNA,k):
 bestAlignment, minHammingDist, kmer = ContainedMotifSearch(DNA,k)
 motif = Consensus(bestAlignment,DNA,k)
 newAlignment, HammingDist = ScanAndScoreMotif(DNA, motif)
 return newAlignment, HammingDist, motif

%time ContainedConsensusMotifSearch(seqApprox,10)

709 Motifs in our set
CPU times: user 1.14 s, sys: 20 ms, total: 1.16 s
Wall time: 1.14 s

(17, 47, 18, 33, 21, 0, 46, 70, 16, 65), 11, 'tagatccgaa')
Dad, are we there yet?

We got the answer that we were looking for, but

- How can we be sure it will always give the correct answer?
 - Our other methods were exhaustive, they examined every possibility
 - This method considers only a subset of solutions, picks the best one in a greedy fashion
 - What if there had been ties among the candidate motifs?
 - What if the consensus score (87% matches) had been lower
 - Would we, should we, be satisfied?

- It's one thing to be greedy, and another to be both greedy and biased
 - Our method is greedy in that it considers only the best contained motif, greedy methods are subject to falling into local minimums
 - Since consider only subsequences as motifs we introduce bias

- Note that Consensus can generate motifs not seen in our data
A randomized approach to motif finding

- One way to avoid bias and local minima is to introduce *randomness*
- We can generate candidate motifs from our data by treating it as distribution
 - likely motif candidates from this distribution are those generated by Consensus
 - Consensus strings can be tested by Scan-and-Score and their alignments lead to new consensus strings
 - Eventually, we should converge to some local minimal answer
- To avoid finding a local minimum, we try several random starts, and search for the best score amongst all these starts.
- A randomized algorithm does not guarantee an optimal solution. Instead it promises a good/plausible answer on average, and it is not susceptible to a worse-case data sets as our greedy/biased method was.
import random

def RandomizedMotifSearch(DNA, k):
 """ Searches for a k-length motif that appears in all given DNA sequences. It begins with a random set of candidate consensus motifs derived from the data. It refines the motif until a true consensus emerges."""

 # Seed motifs from random alignments
 motifSet = set()
 for i in xrange(500):
 randomAlignment = [random.randint(0, len(DNA[j])-k) for j in xrange(len(DNA))]
 motif = Consensus(randomAlignment, DNA, k)
 motifSet.add(motif)

 bestAlignment = []
 minHammingDist = k*len(DNA)
 kmer = ''
 testSet = motifSet.copy()
 while len(testSet) > 0:
 print len(motifSet),
 nextSet = set()
 for motif in testSet:
 align, dist = ScanAndScoreMotif(DNA, motif)
for i in xrange(500):
 randomAlignment = [random.randint(0, len(DNA[j])-k) for j in xrange(len(DNA))]
 motif = Consensus(randomAlignment, DNA, k)
 motifSet.add(motif)

bestAlignment = []
minHammingDist = k*len(DNA)
kmer = ''
testSet = motifSet.copy()
while (len(testSet) > 0):
 print len(motifSet),
 nextSet = set()
 for motif in testSet:
 align, dist = ScanAndScoreMotif(DNA, motif)
 # add new motifs based on these alignments
 newMotif = Consensus(align, DNA, k)
 if (newMotif not in motifSet):
 nextSet.add(newMotif)
 if (dist < minHammingDist):
 bestAlignment = [s for s in align]
 minHammingDist = dist
 kmer = motif
 testSet = nextSet.copy()
 motifSet = motifSet | nextSet
return bestAlignment, minHammingDist, kmer
Let's try it

```python
%time RandomizedMotifSearch(seqApprox, 10)
```

500 749 822 839 842
CPU times: user 1.43 s, sys: 23 ms, total: 1.45 s
Wall time: 1.56 s

([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa')

Randomized algorithms should be restarted multiple times to insure a stable solution.

```
for i in xrange(10):
    print RandomizedMotifSearch(seqApprox, 10)
```

500 751 820 836 837 ([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa')
500 750 825 838 844 ([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa')
500 755 837 856 859 ([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa')
499 745 814 831 834 ([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa')
500 760 837 859 862 863 864 ([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa')
500 744 813 825 827 ([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa')
498 746 830 846 850 851 ([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa')
500 766 848 864 866 ([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa')
500 728 800 810 811 ([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa')
500 750 833 851 852 ([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa')
Lessons Learned

- We can find Motifs in our lifetime
 - Practical exhaustive search algorithm for small k, MedianStringMotifSearch()
 - Practical fast algorithm RandomizedMotifSearch(DNA,k)
- Three algorithm design approaches "Branch-and-Bound", "Greedy", and "Randomized"
- Reversing the objective, pretending that you know the answer, and validating it
- The power of randomness
 - Not susceptible to worse case data
 - Avoids local minimums that plague some greedy algorithms