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•  RandomProfileMotifSearch is probably not the best way 
to find motifs. Depends on random guesses followed by 
a greedy optimization procedure. 

•  Major cost is Scoring, P(a|P), and updating profiles 
•  Gibbs Sampling estimates a distribution of each variable 

in turn, conditional on the current values of the other 
variables. 

•  However, we can improve the algorithm by introducing 
Gibbs Sampling, an iterative procedure that discards 
one k-mer’s contribution to the profile distribution at 
each iteration and replaces it with a new one. 

•  Gibbs Sampling starts out more slowly but chooses new 
k-mers with increasing the odds that it will improve the 
current solution. 
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 1)  Randomly choose starting positions  
         s = (s1,...,st) and form the set of  k-mers associated  
         with these starting positions. 
    2)  Randomly choose one of the t sequences. 

 3)  Create a profile P from the other t -1 sequences. 
 4)  For each position in the removed sequence, 
      calculate the probability that the l-mer starting at 
      that position was generated by P. 
 5)  Choose a new starting position for the removed 
      sequence at random based on the probabilities 
      calculated in step 4. 
 6)  Repeat steps 2-5 until there is no improvement 
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Input:  
 t = 5 sequences, motif length  l = 8 

   1.  GTAAACAATATTTATAGC 

   2.  AAAATTTACCTCGCAAGG 

   3.  CCGTACTGTCAAGCGTGG 

   4.  TGAGTAAACGACGTCCCA 

   5.  TACTTAACACCCTGTCAA 
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1)  Randomly choose starting positions,    
      s=(s1,s2,s3,s4,s5) in the 5 sequences:  

   
 s1=7  GTAAACAATATTTATAGC 
 s2=11  AAAATTTACCTTAGAAGG 

 s3=9  CCGTACTGTCAAGCGTGG 
 s4=4  TGAGTAAACGACGTCCCA 

 s5=1  TACTTAACACCCTGTCAA 
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2) Choose one of the sequences at random: 
 Sequence 2: AAAATTTACCTTAGAAGG  

     s1=7     GTAAACAATATTTATAGC 
 s2=11   AAAATTTACCTTAGAAGG 
 s3=9   CCGTACTGTCAAGCGTGG 
 s4=4   TGAGTAAACGACGTCCCA 
 s5=1   TACTTAACACCCTGTCAA 
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2) Choose one of the sequences at random: 
 Sequence 2: AAAATTTACCTTAGAAGG  

    s1=7      GTAAACAATATTTATAGC 

 s3=9   CCGTACTGTCAAGCGTGG 
 s4=4   TGAGTAAACGACGTCCCA 
 s5=1   TACTTAACACCCTGTCAA 
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3) Create profile P from l-mers in remaining 4 sequences: 

1 A A T A T T T A 

3 T C A A G C G T 

4 G T A A A C G A 

5 T A C T T A A C 

A 1/4 2/4 2/4 3/4 1/4 1/4 1/4 2/4 

C 0 1/4 1/4 0 0 2/4 0 1/4 

T 2/4 1/4 1/4 1/4 2/4 1/4 1/4 1/4 

G 1/4 0 0 0 1/4 0 3/4 0 
Consensus 

String 
T A A A T C G A 
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4) Calculate the prob(a|P) for every possible 8-mer 
in the removed sequence:       

          Strings Highlighted in Red                       prob(a|P)  

AAAATTTACCTTAGAAGG .000732 
AAAATTTACCTTAGAAGG .000122 
AAAATTTACCTTAGAAGG 0 
AAAATTTACCTTAGAAGG 0 
AAAATTTACCTTAGAAGG 0 
AAAATTTACCTTAGAAGG 0 
AAAATTTACCTTAGAAGG 0 
AAAATTTACCTTAGAAGG .000183 
AAAATTTACCTTAGAAGG 0 
AAAATTTACCTTAGAAGG 0 
AAAATTTACCTTAGAAGG 0 
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5)  Create a distribution of probabilities of  
k-mers prob(a|P), and randomly select a new 
starting position based on this distribution.  

Starting Position 1:  prob( AAAATTTA | P ) =  .706 

Starting Position 2:  prob( AAATTTAC | P ) =  .118 

Starting Position 8:  prob( ACCTTAGA | P ) = .176 

A) To create this distribution, divide each 
probability  prob(a|P) by the total: 
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 B) Select a new starting position at random 
according to computed distribution: 

P(selecting starting position 1):     .706 
P(selecting starting position 2):     .118 
P(selecting starting position 8):     .176 

t = random.random()
if (t < .706):
    # use position 1
elif (t < (.706 + .118)):
    # use position 2
else:
    # use position 8
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Assume we select the substring with the highest 
probability – then we are left with the following 
new substrings and starting positions. 

  s1=7  GTAAACAATATTTATAGC 
  s2=1  AAAATTTACCTCGCAAGG 

  s3=9  CCGTACTGTCAAGCGTGG 

  s4=5  TGAGTAATCGACGTCCCA 

  s5=1  TACTTCACACCCTGTCAA 
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6) We iterate the procedure again with the above 
starting positions until we cannot improve the 
score any more. 

Modified Profile function: 

def Profile(seqList, k, start): 
    dist = [dict([(base,0.1) for base in "acgt"]) for i in xrange(k)] 
    for t in xrange(len(seqList)): 
        if (start[t] < 0): 
            continue 
        for i, base in enumerate(seqList[t][start[t]:start[t]+k]): 
            dist[i][base] += 1.0 
    for i in xrange(k): 
        total = sum(dist[i].values()) 
        for base in "acgt": 
            dist[i][base] /= total 
    return dist 
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def GibbsProfileMotifSearch(seqList, k): 
    start = [random.randint(0,len(seqList[t])-k+1) for t in xrange(len(seqList))] 
    bestScore = 0.0 
    noImprovement = 0 
    while True: 
        remove = random.randint(0,len(seqList)-1) 
        start[remove] = -1 
        distr = Profile(seqList, k, start) 
        score = 0.0 
        for t in xrange(len(seqList)): 
            if (start[t] < 0): 
                rScore = 0.0 
                for i in xrange(len(seqList[remove])-k+1): 
                    score = Score(seqList[remove], i, k, distr) 
                    if (score > rScore): 
                        rStart, rScore = i, score 
                score += rScore 
                start[t] = rStart 
            else: 
                score += Score(seqList[t], start[t], k, distr) 
        if (score > bestScore): 
            bestScore = score 
            noImprovement = 0 
        else: 
            noImprovement += 1 
            if (noImprovement > len(seqList)): 
                break 
    return score, start 
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•  Fewer profile searches, O(n), in exchange for updating 
the profile, O(kt), more often (tradeoff which is easier)  

•  Gibbs sampling can converge much faster than a fully 
randomized approach 

•  Gibbs sampling is more likely to converge to locally 
optimal motifs rather a fully randomized algorithm. 

•  Like the fully Randomized Algorithm it must be run 
with many randomly chosen initial seeds to achieve 
good results. 
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•  Random Projection Algorithm is a different way to 
solve the Motif Finding Problem. 

•  Guiding principle: Instances of a good motif will 
likely agree at a subset of positions. 

•  However, it is unclear how to find these matching, 
“non-mutated” positions. 

•  To bypass the effect of mutations within a motif, we 
randomly select a subset of positions in the pattern 
creating a projection of the pattern.   

•  Search for that projection in a hope that the selected 
positions are not affected by mutations in most 
instances of the motif.   
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•  Choose k positions in string of length l. 
•  Concatenate nucleotides at chosen k positions to 

form k-tuple. 
•  This can be viewed as a projection of l-

dimensional space onto k-dimensional subspace. 

ATGGCATTCAGATTC TGCTGAT 

l = 15 k = 7      Projection 

Projection = (2, 4, 5, 7, 11, 12, 13) 
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•  Select k out of l positions 
uniformly at random. 

•  For each l-tuple in input 
sequences, hash into 
buckets based on the  
k selected positions. 

•  Recover motif from 
enriched buckets that 
contain many l-tuples 
with at least one from 
each sequence. 

Bucket TGCT 

TGCACCT 

Input sequence: 
…T C A A T G C A C C T A T... 
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•  Some projections will fail to detect motifs but if we try 
many of them the probability that one of the buckets fills 
increases.  

•  In the example below, the bucket **GC*AC is “bad” 
while the bucket   AT**G*C is “good” 

ATGCGTC 

...ccATCCGACca... 

...ttATGAGGCtc... 

...ctATAAGTCgc... 

...tcATGTGACac... (1,2,5,7) projection 

ATGCGTC 

...ccATCCGACca... 

...ttATGAGGCtc... 

...ctATAAGTCgc... 

...tcATGTGACac... (3,4,6,7) projection 
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•  l = 7 (motif size) , k = 4 (projection size) 
•  Choose projection (1,2,5,7) 

GCTC 

...TAGACATCCGACTTGCCTTACTAC... 

Buckets 

ATGC 

ATCCGAC 

GCCTTAC 
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• Hash function h(x) obtained from k positions of 
projection.  

•  Buckets are labeled by values of h(x). 
•  Enriched buckets: contain more than s  l-tuples, for 

some parameter s with representatives from all 
sequences 

ATTC CATC GCTC ATGC 
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•  How do we recover the motif from the sequences in 
enriched buckets? 

•  k nucleotides are exact matches, (hash key of bucket). 
•  Use information in other l-k positions as starting point 

for local refinement scheme, e.g. Gibbs sampler.  

Local refinement algorithm ATGCGAC 
Candidate motif 

ATGC 

ATCCGAC 

ATGAGGC 
ATAAGTC 

ATGCGAC 
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•  Random Projection is a procedure for finding good 
starting points: every enriched bucket is a potential 
starting point.  

•  Feeding these starting points into existing algorithms 
(like Gibbs sampler, or fully Randomized Search) 
provides good local search in vicinity of every starting 
point.  

•  These algorithms work particularly well for “good” 
starting points.  
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def RandomProjectionMotifStart(seqList, k): 
    N = len(seqList) 
    matches = random.randint(k/3,(3*k)/4) 
    positions = sorted(random.sample(range(k), matches)) 
    hash = {} 
    for t in xrange(N): 
        for i in xrange(len(seqList[t])-k+1): 
            pattern = ''.join([seqList[t][i+j] for j in positions]) 
            plist = hash.get(pattern,[[] for j in xrange(N)]) 
            plist[t] += [i] 
            hash[pattern] = plist 
    result = [] 
    for key in hash.iterkeys(): 
        start = [] 
        skipped = 0 
        for posList in hash[key]: 
            if (len(posList) == 0): 
                skipped += 1 
                if (skipped > N/3): 
                    break 
                start.append(-1) 
            else: 
                start.append(posList[0]) 
        else: 
            result.append(start) 
    return result 
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?at?c?aa?? [-1, 49, -1, 35, -1, 2, 48, 12, 18, 67]
at?c?aa??? [-1, 50, -1, 36, -1, 3, 49, 13, 19, 68]
gat???aa?? [19, 49, -1, 50, -1, 2, 48, -1, 18, 67]
?g??cc?aa? [-1, 48, 19, -1, 22, 62, 47, -1, 17, 66]
??gat???aa [17, 47, -1, 48, -1, 0, 46, -1, 16, 65]
t?g?tc?g?? [17, 47, -1, -1, 48, -1, 4, 70, 67, 65]
?t?g?tc?g? [16, 46, -1, -1, 47, -1, 3, 69, 66, 64]
?g??cc?aa? [-1, 48, 19, -1, 22, 62, 47, -1, 17, 66]
g??cc?aa?? [-1, 49, 20, -1, 23, 63, 48, -1, 18, 67]
atc??aa??? [20, 50, -1, 36, 38, -1, 49, -1, 19, 68]

seqApprox = [
    'tagtggtcttttgagtgtagatctgaagggaaagtatttccaccagttcggggtcacccagcagggcagggtgacttaat',
    'cgcgactcggcgctcacagttatcgcacgtttagaccaaaacggagttggatccgaaactggagtttaatcggagtcctt',
    'gttacttgtgagcctggttagacccgaaatataattgttggctgcatagcggagctgacatacgagtaggggaaatgcgt',
    'aacatcaggctttgattaaacaatttaagcacgtaaatccgaattgacctgatgacaatacggaacatgccggctccggg',
    'accaccggataggctgcttattaggtccaaaaggtagtatcgtaataatggctcagccatgtcaatgtgcggcattccac',
    'tagattcgaatcgatcgtgtttctccctctgtgggttaacgaggggtccgaccttgctcgcatgtgccgaacttgtaccc',
    'gaaatggttcggtgcgatatcaggccgttctcttaacttggcggtgcagatccgaacgtctctggaggggtcgtgcgcta',
    'atgtatactagacattctaacgctcgcttattggcggagaccatttgctccactacaagaggctactgtgtagatccgta',
    'ttcttacacccttctttagatccaaacctgttggcgccatcttcttttcgagtccttgtacctccatttgctctgatgac',
    'ctacctatgtaaaacaacatctactaacgtagtccggtctttcctgatctgccctaacctacaggtcgatccgaaattcg']
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•  Fewer starts than other randomized algorithms
 (10x fewer) 

•  Each projection is O(tn), which is the same as the
 full scan of in the fully Randomized Profile scan 

• Generates good starts but requires either Gibbs
 sampling or Randomized search to refine the
 final solution 
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•  Final Monday, 5/2 
–  12:00-3:00PM 
–  This room: FB007 
–  Open book, open notes, 

open internet, online 
–  Will cover material since 

midterm 
–  Final Study session: 

• Friday 4/29, FB007 5pm-7pm 
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