
4/26/16 Comp 555 Spring 2016 1

4/27/16 Comp 555 Spring 2016 2

•  RandomProfileMotifSearch is probably not the best way
to find motifs. Depends on random guesses followed by
a greedy optimization procedure.

•  Major cost is Scoring, P(a|P), and updating profiles
•  Gibbs Sampling estimates a distribution of each variable

in turn, conditional on the current values of the other
variables.

•  However, we can improve the algorithm by introducing
Gibbs Sampling, an iterative procedure that discards
one k-mer’s contribution to the profile distribution at
each iteration and replaces it with a new one.

•  Gibbs Sampling starts out more slowly but chooses new
k-mers with increasing the odds that it will improve the
current solution.

4/26/16 Comp 555 Spring 2016 3

 1) Randomly choose starting positions
 s = (s1,...,st) and form the set of k-mers associated
 with these starting positions.
 2) Randomly choose one of the t sequences.

 3) Create a profile P from the other t -1 sequences.
 4) For each position in the removed sequence,
 calculate the probability that the l-mer starting at
 that position was generated by P.
 5) Choose a new starting position for the removed
 sequence at random based on the probabilities
 calculated in step 4.
 6) Repeat steps 2-5 until there is no improvement

4/26/16 Comp 555 Spring 2016 4

Input:
 t = 5 sequences, motif length l = 8

 1. GTAAACAATATTTATAGC

 2. AAAATTTACCTCGCAAGG

 3. CCGTACTGTCAAGCGTGG

 4. TGAGTAAACGACGTCCCA

 5. TACTTAACACCCTGTCAA

4/26/16 Comp 555 Spring 2016 5

1) Randomly choose starting positions,
 s=(s1,s2,s3,s4,s5) in the 5 sequences:

 s1=7 GTAAACAATATTTATAGC
 s2=11 AAAATTTACCTTAGAAGG

 s3=9 CCGTACTGTCAAGCGTGG
 s4=4 TGAGTAAACGACGTCCCA

 s5=1 TACTTAACACCCTGTCAA

4/26/16 Comp 555 Spring 2016 6

2) Choose one of the sequences at random:
 Sequence 2: AAAATTTACCTTAGAAGG

 s1=7 GTAAACAATATTTATAGC
 s2=11 AAAATTTACCTTAGAAGG
 s3=9 CCGTACTGTCAAGCGTGG
 s4=4 TGAGTAAACGACGTCCCA
 s5=1 TACTTAACACCCTGTCAA

4/26/16 Comp 555 Spring 2016 7

2) Choose one of the sequences at random:
 Sequence 2: AAAATTTACCTTAGAAGG

 s1=7 GTAAACAATATTTATAGC

 s3=9 CCGTACTGTCAAGCGTGG
 s4=4 TGAGTAAACGACGTCCCA
 s5=1 TACTTAACACCCTGTCAA

4/26/16 Comp 555 Spring 2016 8

3) Create profile P from l-mers in remaining 4 sequences:

1 A A T A T T T A

3 T C A A G C G T

4 G T A A A C G A

5 T A C T T A A C

A 1/4 2/4 2/4 3/4 1/4 1/4 1/4 2/4

C 0 1/4 1/4 0 0 2/4 0 1/4

T 2/4 1/4 1/4 1/4 2/4 1/4 1/4 1/4

G 1/4 0 0 0 1/4 0 3/4 0
Consensus

String
T A A A T C G A

4/26/16 Comp 555 Spring 2016 9

4) Calculate the prob(a|P) for every possible 8-mer
in the removed sequence:

 Strings Highlighted in Red prob(a|P)

AAAATTTACCTTAGAAGG .000732
AAAATTTACCTTAGAAGG .000122
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG .000183
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0

4/26/16 Comp 555 Spring 2016 10

5) Create a distribution of probabilities of
k-mers prob(a|P), and randomly select a new
starting position based on this distribution.

Starting Position 1: prob(AAAATTTA | P) = .706

Starting Position 2: prob(AAATTTAC | P) = .118

Starting Position 8: prob(ACCTTAGA | P) = .176

A) To create this distribution, divide each
probability prob(a|P) by the total:

4/26/16 Comp 555 Spring 2016 11

 B) Select a new starting position at random
according to computed distribution:

P(selecting starting position 1): .706
P(selecting starting position 2): .118
P(selecting starting position 8): .176

t = random.random()
if (t < .706):
 # use position 1
elif (t < (.706 + .118)):
 # use position 2
else:
 # use position 8

4/26/16 Comp 555 Spring 2016 12

Assume we select the substring with the highest
probability – then we are left with the following
new substrings and starting positions.

 s1=7 GTAAACAATATTTATAGC
 s2=1 AAAATTTACCTCGCAAGG

 s3=9 CCGTACTGTCAAGCGTGG

 s4=5 TGAGTAATCGACGTCCCA

 s5=1 TACTTCACACCCTGTCAA

4/27/16 Comp 555 Spring 2016 13

6) We iterate the procedure again with the above
starting positions until we cannot improve the
score any more.

Modified Profile function:

def Profile(seqList, k, start):
 dist = [dict([(base,0.1) for base in "acgt"]) for i in xrange(k)]
 for t in xrange(len(seqList)):
 if (start[t] < 0):
 continue
 for i, base in enumerate(seqList[t][start[t]:start[t]+k]):
 dist[i][base] += 1.0
 for i in xrange(k):
 total = sum(dist[i].values())
 for base in "acgt":
 dist[i][base] /= total
 return dist

4/27/16 Comp 555 Spring 2016 14

def GibbsProfileMotifSearch(seqList, k):
 start = [random.randint(0,len(seqList[t])-k+1) for t in xrange(len(seqList))]
 bestScore = 0.0
 noImprovement = 0
 while True:
 remove = random.randint(0,len(seqList)-1)
 start[remove] = -1
 distr = Profile(seqList, k, start)
 score = 0.0
 for t in xrange(len(seqList)):
 if (start[t] < 0):
 rScore = 0.0
 for i in xrange(len(seqList[remove])-k+1):
 score = Score(seqList[remove], i, k, distr)
 if (score > rScore):
 rStart, rScore = i, score
 score += rScore
 start[t] = rStart
 else:
 score += Score(seqList[t], start[t], k, distr)
 if (score > bestScore):
 bestScore = score
 noImprovement = 0
 else:
 noImprovement += 1
 if (noImprovement > len(seqList)):
 break
 return score, start

4/26/16 Comp 555 Spring 2016 15

4/26/16 Comp 555 Spring 2016 16

•  Fewer profile searches, O(n), in exchange for updating
the profile, O(kt), more often (tradeoff which is easier)

•  Gibbs sampling can converge much faster than a fully
randomized approach

•  Gibbs sampling is more likely to converge to locally
optimal motifs rather a fully randomized algorithm.

•  Like the fully Randomized Algorithm it must be run
with many randomly chosen initial seeds to achieve
good results.

4/26/16 Comp 555 Spring 2016 17

•  Random Projection Algorithm is a different way to
solve the Motif Finding Problem.

•  Guiding principle: Instances of a good motif will
likely agree at a subset of positions.

•  However, it is unclear how to find these matching,
“non-mutated” positions.

•  To bypass the effect of mutations within a motif, we
randomly select a subset of positions in the pattern
creating a projection of the pattern.

•  Search for that projection in a hope that the selected
positions are not affected by mutations in most
instances of the motif.

4/26/16 Comp 555 Spring 2016 18

•  Choose k positions in string of length l.
•  Concatenate nucleotides at chosen k positions to

form k-tuple.
•  This can be viewed as a projection of l-

dimensional space onto k-dimensional subspace.

ATGGCATTCAGATTC TGCTGAT

l = 15 k = 7 Projection

Projection = (2, 4, 5, 7, 11, 12, 13)

4/26/16 Comp 555 Spring 2016 19

•  Select k out of l positions
uniformly at random.

•  For each l-tuple in input
sequences, hash into
buckets based on the
k selected positions.

•  Recover motif from
enriched buckets that
contain many l-tuples
with at least one from
each sequence.

Bucket TGCT

TGCACCT

Input sequence:
…T C A A T G C A C C T A T...

4/26/16 Comp 555 Spring 2016 20

•  Some projections will fail to detect motifs but if we try
many of them the probability that one of the buckets fills
increases.

•  In the example below, the bucket **GC*AC is “bad”
while the bucket AT**G*C is “good”

ATGCGTC

...ccATCCGACca...

...ttATGAGGCtc...

...ctATAAGTCgc...

...tcATGTGACac... (1,2,5,7) projection

ATGCGTC

...ccATCCGACca...

...ttATGAGGCtc...

...ctATAAGTCgc...

...tcATGTGACac... (3,4,6,7) projection

4/26/16 Comp 555 Spring 2016 21

•  l = 7 (motif size) , k = 4 (projection size)
•  Choose projection (1,2,5,7)

GCTC

...TAGACATCCGACTTGCCTTACTAC...

Buckets

ATGC

ATCCGAC

GCCTTAC

4/26/16 Comp 555 Spring 2016 22

• Hash function h(x) obtained from k positions of
projection.

•  Buckets are labeled by values of h(x).
•  Enriched buckets: contain more than s l-tuples, for

some parameter s with representatives from all
sequences

ATTC CATC GCTC ATGC

4/26/16 Comp 555 Spring 2016 23

•  How do we recover the motif from the sequences in
enriched buckets?

•  k nucleotides are exact matches, (hash key of bucket).
•  Use information in other l-k positions as starting point

for local refinement scheme, e.g. Gibbs sampler.

Local refinement algorithm ATGCGAC
Candidate motif

ATGC

ATCCGAC

ATGAGGC
ATAAGTC

ATGCGAC

4/26/16 Comp 555 Spring 2016 24

•  Random Projection is a procedure for finding good
starting points: every enriched bucket is a potential
starting point.

•  Feeding these starting points into existing algorithms
(like Gibbs sampler, or fully Randomized Search)
provides good local search in vicinity of every starting
point.

•  These algorithms work particularly well for “good”
starting points.

4/27/16 Comp 555 Spring 2016 25

def RandomProjectionMotifStart(seqList, k):
 N = len(seqList)
 matches = random.randint(k/3,(3*k)/4)
 positions = sorted(random.sample(range(k), matches))
 hash = {}
 for t in xrange(N):
 for i in xrange(len(seqList[t])-k+1):
 pattern = ''.join([seqList[t][i+j] for j in positions])
 plist = hash.get(pattern,[[] for j in xrange(N)])
 plist[t] += [i]
 hash[pattern] = plist
 result = []
 for key in hash.iterkeys():
 start = []
 skipped = 0
 for posList in hash[key]:
 if (len(posList) == 0):
 skipped += 1
 if (skipped > N/3):
 break
 start.append(-1)
 else:
 start.append(posList[0])
 else:
 result.append(start)
 return result

4/27/16 Comp 555 Spring 2016 26

?at?c?aa?? [-1, 49, -1, 35, -1, 2, 48, 12, 18, 67]
at?c?aa??? [-1, 50, -1, 36, -1, 3, 49, 13, 19, 68]
gat???aa?? [19, 49, -1, 50, -1, 2, 48, -1, 18, 67]
?g??cc?aa? [-1, 48, 19, -1, 22, 62, 47, -1, 17, 66]
??gat???aa [17, 47, -1, 48, -1, 0, 46, -1, 16, 65]
t?g?tc?g?? [17, 47, -1, -1, 48, -1, 4, 70, 67, 65]
?t?g?tc?g? [16, 46, -1, -1, 47, -1, 3, 69, 66, 64]
?g??cc?aa? [-1, 48, 19, -1, 22, 62, 47, -1, 17, 66]
g??cc?aa?? [-1, 49, 20, -1, 23, 63, 48, -1, 18, 67]
atc??aa??? [20, 50, -1, 36, 38, -1, 49, -1, 19, 68]

seqApprox = [
 'tagtggtcttttgagtgtagatctgaagggaaagtatttccaccagttcggggtcacccagcagggcagggtgacttaat',
 'cgcgactcggcgctcacagttatcgcacgtttagaccaaaacggagttggatccgaaactggagtttaatcggagtcctt',
 'gttacttgtgagcctggttagacccgaaatataattgttggctgcatagcggagctgacatacgagtaggggaaatgcgt',
 'aacatcaggctttgattaaacaatttaagcacgtaaatccgaattgacctgatgacaatacggaacatgccggctccggg',
 'accaccggataggctgcttattaggtccaaaaggtagtatcgtaataatggctcagccatgtcaatgtgcggcattccac',
 'tagattcgaatcgatcgtgtttctccctctgtgggttaacgaggggtccgaccttgctcgcatgtgccgaacttgtaccc',
 'gaaatggttcggtgcgatatcaggccgttctcttaacttggcggtgcagatccgaacgtctctggaggggtcgtgcgcta',
 'atgtatactagacattctaacgctcgcttattggcggagaccatttgctccactacaagaggctactgtgtagatccgta',
 'ttcttacacccttctttagatccaaacctgttggcgccatcttcttttcgagtccttgtacctccatttgctctgatgac',
 'ctacctatgtaaaacaacatctactaacgtagtccggtctttcctgatctgccctaacctacaggtcgatccgaaattcg']

4/27/16 Comp 555 Spring 2016 27

•  Fewer starts than other randomized algorithms
 (10x fewer)

•  Each projection is O(tn), which is the same as the
 full scan of in the fully Randomized Profile scan

• Generates good starts but requires either Gibbs
 sampling or Randomized search to refine the
 final solution

4/27/16 Comp 555 Spring 2016 28

•  Final Monday, 5/2
–  12:00-3:00PM
–  This room: FB007
–  Open book, open notes,

open internet, online
–  Will cover material since

midterm
–  Final Study session:

• Friday 4/29, FB007 5pm-7pm

4/27/16 Comp 555 Spring 2016 29

