

Randomized Algorithms

Randomized Algorithms

- Randomized algorithms incorporate random, rather than deterministic, decisions
- Commonly used in situations where no exact and/or fast algorithm is known

- Works for algorithms that behave well on typical data, but poorly in special cases
- Main advantage is that no input can reliably produce worst-case results because the algorithm runs differently each time.

Select

- Select(L, k) finds the $\mathrm{k}^{\text {th }}$ smallest element in L
- Select($\mathrm{L}, 1$) find the smallest...
- Well known O(n) algorithm

$$
\begin{aligned}
& \operatorname{minv}=\text { HUGE } \\
& \text { for } v \text { in } L: \\
& \quad \text { if }(v<\operatorname{minv}): \\
& \quad \operatorname{minv}=v
\end{aligned}
$$

- Select(L, len(L)/2) find the median...
- How?
- median $=\operatorname{sorted}(\mathrm{L})[\operatorname{len}(\mathrm{L}) / 2] \quad \rightarrow \mathrm{O}(\mathrm{n} \operatorname{logn})$
- Can we find medians, or $1^{\text {st }}$ quartiles in $\mathrm{O}(\mathrm{n})$?

Select Recursion

- Select(\mathbf{L}, \mathbf{k}) finds the $\mathrm{k}^{\text {th }}$ smallest element in \mathbf{L}
- Select an element m from unsorted list \mathbf{L} and partition L the array into two smaller lists:

$$
\mathbf{L}_{l o} \text { - elements smaller than } m
$$

and

$$
\mathbf{L}_{h i} \text { - elements larger than } m
$$

- If len $\left(\mathbf{L}_{l o}\right)>k$ then

Select $\left(\mathbf{L}_{l o}, k\right)$
else if $k>\operatorname{len}\left(\mathbf{L}_{l o}\right)+1$ then
$\operatorname{Select}\left(\mathbf{L}_{h i}, \mathrm{k}-\left(\operatorname{len}\left(\mathbf{L}_{l o}\right)+1\right)\right)$
else m is the $\mathrm{k}^{\text {th }}$ smallest element

Example of $\operatorname{Select}(\mathrm{L}, 5)$

 Given an array: $\mathrm{L}=\{6,3,2,8,4,5,1,7,0,9\}$

Step 1: Choose the first element as m

$$
\stackrel{L-16,3,8,4,5,1,7,0,91}{ }
$$

Our Selection

Example of $\operatorname{Select}(\mathrm{L}, 5)$ (cont'd)

 Step 2: Split the array into $\mathbf{L}_{1 \mathrm{o}}$ and $\mathbf{L}_{\text {hi }}$

Example of $\operatorname{Select}(\mathrm{L}, 5)$ (cont'd)

 Step 3: Recursively call Select on either $\mathbf{L}_{l o}$ or $\mathbf{L}_{h i}$ until len $\left(\mathbf{L}_{l o}\right)+1=k$, then return m.

$$
\begin{aligned}
& \operatorname{len}\left(\mathrm{L}_{10}\right)>\mathrm{k}=5 \rightarrow \operatorname{Select}(\{3,2,4,5,1,0\}, 5) \\
& \mathrm{k}=5>\operatorname{len}\left(\mathrm{L}_{10}\right)+1 \rightarrow \operatorname{Select}(\{4,5\}, 5-3-1) \\
& m=4 \\
& L_{l o}=\{2,1,0\} \quad \mathrm{L}_{\mathrm{hi}}=\{4,5\} \\
& k=1=\operatorname{empty}\}, \mathrm{L}_{\mathrm{hi}}=\{5\} \\
& \mathrm{len}\left(\mathrm{~L}_{10}\right)+1 \rightarrow \text { return } 4
\end{aligned}
$$

Select Code


```
def select(L, k):
    value = L[0]
    Llo = [t for t in data if t < value]
    Lhi = [t for t in data if t > value]
    below = len(Llo) + 1
    if (k < len(Llo)):
    return select(Llo, k)
    elif (k > below):
        return select(Lhi, k - below)
        else:
        return value
```


Select with Good Splits

- Runtime depends on our selection of m :
- A good selection will split \mathbf{L} evenly such that

$$
\left|\mathbf{L}_{l o}\right|=\left|\mathbf{L}_{h i}\right|=|\mathbf{L}| / 2
$$

- The recurrence relation is:

$$
T(n)=T(n / 2)
$$

$$
\mathrm{n}+\mathrm{n} / 2+\mathrm{n} / 4+\mathrm{n} / 8+\mathrm{n} / 16+\ldots=2 \mathrm{n} \rightarrow \mathrm{O}(\mathrm{n})
$$

Select with Bad Splits

 However, a poor selection will split L unevenly and in the worst case, all elements will be greater or less than m so that one Sublist is full and the other is empty.
For a poor selection, the recurrence relation is

$$
T(n)=T(n-1)
$$

In this case, the runtime is $\mathrm{O}\left(n^{2}\right)$.

Our dilemma:
$\mathrm{O}(n)$ or $\mathrm{O}\left(n^{2}\right)$, depending on the list... or $\mathrm{O}(n \log n)$ independent of it

Select Analysis (cont'd)

- Select seems risky compared to Sort
- To improve Select, we need to choose m to give good 'splits'
- It can be proven that to achieve $\mathrm{O}(n)$ running time, we don't need a perfect splits, just reasonably good ones.
- In fact, if both subarrays are at least of size $n / 4$, then running time will be $\mathrm{O}(n)$.
- This implies that half of the choices of m make good splitters.

A Randomized Approach

- To improve Select, randomly select m.
- Since half of the elements will be good splitters, if we choose m at random we will get a 50% chance that m will be a good choice.
- This approach will make sure that no matter what input is received, the expected running time is small.

Randomized Select

def randomizedSelect(L, k):
value $=$ random.choice (L)
Llo $=$ [t for t in data if $t<v a l u e]$
Lhi $=$ [t for t in data if $t>$ value]
below $=\operatorname{len}($ Llo $)+1$
if (k < len(Llo)):
return randomizedSelect(Llo, k)
elif (k > below):
return randomizedSelect(Lhi, k-below)
else:
return value

RandomizedSelect Analysis

- Worst case runtime: $\mathrm{O}\left(n^{2}\right)$
- Expected runtime: $\mathrm{O}(n)$.
- Expected runtime is a good measure of the performance of randomized algorithms, often more informative than worst case runtimes.
- Worst case runtimes are rarely repeated
- RandomizedSelect always returns the correct answer, which offers a way to classify Randomized Algorithms.

Types of Randomized Algorithms

- Las Vegas Algorithms - always produce the correct solution (i.e. randomizedSelect)
- Monte Carlo Algorithms - do not always return the correct solution.

Of course, Las Vegas Algorithms are always preferred, but they are often hard to come by.

Recall the Motif Finding Problem

 Motif Finding Problem: Given a list of t sequences
each of length n, find the "best" pattern of length k
that appears in each of the t sequences.

A New Motif Finding Approach

- Motif Finding Problem: Given a list of t length n sequences, find the best near-matching pattern of length k in each sequence.
- Previously: we have solved the Motif Finding Problem using a Branch-and-Bound or a Exhaustive techniques.
- Now: Randomly select possible locations and find a way to change those locations in an attempt to converge to the hidden motif.

Profiles Revisited

- Let $\mathbf{s}=\left(s_{1}, \ldots, s_{\mathrm{t}}\right)$ be the starting positions for k-mers in our t sequences.
- The substrings corresponding to these starting positions will form:
$-t \times k$ alignment matrix
$-4 \times k$ profile matrix*
* Note that we now define the profile matrix in terms of frequency, not counts as before.
$P(X \mid$ profile $)=0.6 * 0.8 * 0.8 * 1.0 * 0.6 * 0.8 * 0.6 * 0.8=0.0885$

Scoring Strings with a Profile

- Let k-mer $\mathbf{a}=a_{1}, a_{2}, a_{3}, \ldots a_{k}$
- $P(\mathbf{a} \mid \mathbf{P})$ is defined as the probability that an k-mer a was created by the Profile distribution \mathbf{P}.
- If \mathbf{a} is very similar to the consensus string of \mathbf{P} then $P(\mathbf{a} \mid \mathbf{P})$ will be high
- If a is very different, then $P(\mathbf{a} \mid \mathbf{P})$ will be low.

$$
k
$$

$$
\operatorname{Prob}(\mathbf{a} \mid \mathbf{P})=\prod_{i=1} p\left(a_{i}, i\right)
$$

Scoring Strings with a Profile (cont'd)

Given a profile: $\mathbf{P}=$

A	$1 / 2$	$7 / 8$	$3 / 8$	0	$1 / 8$	0
C	$1 / 8$	0	$1 / 2$	$5 / 8$	$3 / 8$	0
T	$1 / 8$	$1 / 8$	0	0	$1 / 4$	$7 / 8$
G	$1 / 4$	0	$1 / 8$	$3 / 8$	$1 / 4$	$1 / 8$

The probability of the consensus string: $\operatorname{Prob}($ aaact $\mid \mathbf{P})=$???

Scoring Strings with a Profile (cont'd)

Given a profile: $\mathbf{P}=$

A	$\mathbf{1 / 2}$	$7 / 8$	$3 / 8$	0	$1 / 8$	0
C	$1 / 8$	0	$1 / 2$	$5 / 8$	$3 / 8$	0
T	$1 / 8$	$1 / 8$	0	0	$1 / 4$	$7 / 8$
G	$1 / 4$	0	$1 / 8$	$3 / 8$	$1 / 4$	$1 / 8$

The probability of the consensus string:
$\operatorname{Prob}(\mathbf{a a a c t t} \mid \mathbf{P})=1 / 2 \times 7 / 8 \times 3 / 8 \times 5 / 8 \times 3 / 8 \times 7 / 8=.033646$

Scoring Strings with a Profile (cont'd)

Given a profile: $\mathbf{P}=$

A	$\mathbf{1} / \mathbf{2}$	$7 / 8$	$\mathbf{3 / 8}$	0	$\mathbf{1 / 8}$	0
C	$1 / 8$	0	$1 / 2$	$5 / 8$	$3 / 8$	0
T	$1 / 8$	$\mathbf{1 / 8}$	0	0	$1 / 4$	$7 / 8$
G	$1 / 4$	0	$1 / 8$	$3 / 8$	$1 / 4$	$\mathbf{1} 8$

The probability of the consensus string:
$\operatorname{Prob}(\mathbf{a a a c t t} \mid \mathbf{P})=1 / 2 \times 7 / 8 \times 3 / 8 \times 5 / 8 \times 3 / 8 \times 7 / 8=.033646$
Probability of a different string:
$\operatorname{Prob}(\boldsymbol{a t a c a g} \mid \mathbf{P})=1 / 2 \times 1 / 8 \times 3 / 8 \times 5 / 8 \times 1 / 8 \times 1 / 8=.001602$

P-Most Probable k-mer

- Define the \mathbf{P}-most probable k-mer from a sequence as an k-mer in that sequence which has the highest probability of being created from the profile \mathbf{P}.

$\mathbf{P}=$| A | $1 / 2$ | $7 / 8$ | $3 / 8$ | 0 | $1 / 8$ | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | $1 / 8$ | 0 | $1 / 2$ | $5 / 8$ | $3 / 8$ | 0 |
| T | $1 / 8$ | $1 / 8$ | 0 | 0 | $1 / 4$ | $7 / 8$ |
| G | $1 / 4$ | 0 | $1 / 8$ | $3 / 8$ | $1 / 4$ | $1 / 8$ |

Given a sequence $=$ ctataaacctacatc, find the k-mer that best matches the given profile

P-Most Probable k-mer (cont'd)

A	$1 / 2$	$7 / 8$	$3 / 8$	0	$1 / 8$	0
C	$1 / 8$	0	$1 / 2$	$5 / 8$	$3 / 8$	0
T	$1 / 8$	$1 / 8$	0	0	$1 / 4$	$7 / 8$
G	$1 / 4$	0	$1 / 8$	$3 / 8$	$1 / 4$	$1 / 8$

Find the $\operatorname{Prob}(\mathbf{a} \mid \mathbf{P})$ of every possible 6-mer:
First try: $\mathbf{c t a t a a c c t t a c a t c}$
Second try: ctataacctacatc
Third try: ctataaccttacatc
-Continue this process to evaluate every possible 6-mer

P-Most Probable k-mer (cont'd)

Compute $\operatorname{prob}(\mathbf{a} \mid \mathbf{P})$ for every possible 6-mer:

String, Highlighted in Red	Calculations	$\operatorname{prob}(\mathbf{a} \mid \mathbf{P})$
ctataaaccttacat	$1 / 8 \times 1 / 8 \times 3 / 8 \times 0 \times 1 / 8 \times 0$	0
ctataaaccttacat	$1 / 2 \times 7 / 8 \times 0 \times 0 \times 1 / 8 \times 0$	0
ctataaaccttacat	$1 / 2 \times 1 / 8 \times 3 / 8 \times 0 \times 1 / 8 \times 0$	0
ctataaaccttacat	$1 / 8 \times 7 / 8 \times 3 / 8 \times 0 \times 3 / 8 \times 0$	0
ctataaaccttacat	$1 / 2 \times 7 / 8 \times 3 / 8 \times 5 / 8 \times 3 / 8 \times 7 / 8$.0336
ctataaaccttacat	$1 / 2 \times 7 / 8 \times 1 / 2 \times 5 / 8 \times 1 / 4 \times 7 / 8$.0299
ctataaaccttacat	$1 / 2 \times 0 \times 1 / 2 \times 01 / 4 \times 0$	0
ctataaaccttacat	$1 / 8 \times 0 \times 0 \times 0 \times 0 \times 1 / 8 \times 0$	0
ctataaaccttacat	$1 / 8 \times 1 / 8 \times 0 \times 0 \times 3 / 8 \times 0$	0
ctataaaccttacat	$1 / 8 \times 1 / 8 \times 3 / 8 \times 5 / 8 \times 1 / 8 \times 7 / 8$.0004

P-Most Probable k-mer (cont'd)

P-Most Probable 6-mer in the sequence is aaacct:

String, Highlighted in Red	Calculations	$\operatorname{Prob}(\mathbf{a} \mid \mathbf{P})$
ctataaaccttacat	$1 / 8 \times 1 / 8 \times 3 / 8 \times 0 \times 1 / 8 \times 0$	0
ctataaaccttacat	$1 / 2 \times 7 / 8 \times 0 \times 0 \times 1 / 8 \times 0$	0
ctataaaccttacat	$1 / 2 \times 1 / 8 \times 3 / 8 \times 0 \times 1 / 8 \times 0$	0
ctataaaccttacat	$1 / 8 \times 7 / 8 \times 3 / 8 \times 0 \times 3 / 8 \times 0$	0
ctataaaccttacat	$1 / 2 \times 7 / 8 \times 3 / 8 \times 5 / 8 \times 3 / 8 \times 7 / 8$.0336
ctataaaccttacat	$1 / 2 \times 7 / 8 \times 1 / 2 \times 5 / 8 \times 1 / 4 \times 7 / 8$.0299
ctataaaccttacat	$1 / 2 \times 0 \times 1 / 2 \times 01 / 4 \times 0$	0
ctataaaccttacat	$1 / 8 \times 0 \times 0 \times 0 \times 0 \times 1 / 8 \times 0$	0
ctataaaccttacat	$1 / 8 \times 1 / 8 \times 0 \times 0 \times 3 / 8 \times 0$	0
ctataaaccttacat	$1 / 8 \times 1 / 8 \times 3 / 8 \times 5 / 8 \times 1 / 8 \times 7 / 8$.0004

P-Most Probable k-mer (cont'd)

aaacct is the \mathbf{P}-most probable 6-mer in:
ctataaaccttacatc
because $\operatorname{Prob}($ aaacct $\mid \mathbf{P})=.0336$ is greater than the $\operatorname{Prob}(\mathbf{a} \mid \mathbf{P})$ of any other 6-mer in the sequence.

Dealing with Zeroes

- In our toy example $\operatorname{prob}(\mathbf{a} \mid \mathbf{P})=0$ in many cases. In practice, there will be enough sequences so that the number of elements in the profile with a frequency of zero is small.
- To avoid many entries with $\operatorname{prob}(\mathbf{a} \mid \mathbf{P})=0$, there exist techniques to equate zero to a very small number so that one zero does not make the entire probability of a string zero. Pseudo counts (assigning a prior probability based on our best guess).

P-Most Probable k-mers in Many Sequences

- Find the P-most probable k-mer in each of the " t " sequences.

$\boldsymbol{P}=$| A | $1 / 2$ | $7 / 8$ | $3 / 8$ | 0 | $1 / 8$ | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | $1 / 8$ | 0 | $1 / 2$ | $5 / 8$ | $3 / 8$ | 0 |
| T | $1 / 8$ | $1 / 8$ | 0 | 0 | $1 / 4$ | $7 / 8$ |
| G | $1 / 4$ | 0 | $1 / 8$ | $3 / 8$ | $1 / 4$ | $1 / 8$ |

ctataaacgttacatc
atagcgattcgactg
cagcccagaaccct
cggtataccttacatc
tgcattcaatagctta
tatcctttccactcac
ctccaaatcctttaca
ggtcatcctttatcct

P-Most Probable k-mers in Many Sequences (cont'd)

ctataaacgttacatc

1	a	a	a	c	g	t
2	a	t	a	g	c	g
3	a	a	c	c	c	t
4	g	a	a	c	c	t
5	a	t	a	g	c	t
6	g	a	c	c	t	g
7	a	t	c	c	t	t
8	t	a	c	c	t	t
A	$5 / 8$	$5 / 8$	$4 / 8$	0	0	0
C	0	0	$4 / 8$	$6 / 8$	$4 / 8$	0
T	$1 / 8$	$3 / 8$	0	0	$3 / 8$	$6 / 8$
G	$2 / 8$	0	0	$2 / 8$	$1 / 8$	$2 / 8$

atagcgattcgactg
cagcccagaaccct
cggtgaaccttacatc
tgcattcaatagctta
tgtcctgtccactcac
ctccaaatcctttaca
ggtctacctttatcct
P-Most Probable k-mers give a new profile

Comparing New and Old Profiles

1	a	a	a	c	g	t
2	a	t	a	g	c	g
3	a	a	c	c	c	t
4	g	a	a	c	c	t
5	a	t	a	g	c	t
6	g	a	c	c	t	g
7	a	t	c	c	t	t
8	t	a	c	c	t	t
A	$5 / 8$	$5 / 8$	$4 / 8$	0	0	0
C	0	0	$4 / 8$	$6 / 8$	$4 / 8$	0
T	$1 / 8$	$3 / 8$	0	0	$3 / 8$	$6 / 8$
G	$2 / 8$	0	0	$2 / 8$	$1 / 8$	$2 / 8$

A	$1 / 2$	$7 / 8$	$3 / 8$	0	$1 / 8$	0
C	$1 / 8$	0	$1 / 2$	$5 / 8$	$3 / 8$	0
T	$1 / 8$	$1 / 8$	0	0	$1 / 4$	$7 / 8$
G	$1 / 4$	0	$1 / 8$	$3 / 8$	$1 / 4$	$1 / 8$

Red - frequency increased, Blue - frequency decreased

Random Profile Motif Search

Use P-Most probable k-mers to adjust start positions until we reach a "best" profile; this is the motif.

1) Select random starting positions.
2) Create a profile \mathbf{P} from the substrings at these starting positions.
3) Find the \mathbf{P}-most probable k-mer a in each sequence and change the starting position to the starting position of \mathbf{a}.
4) Compute a new profile based on the new starting positions after each iteration and proceed until we cannot increase the score anymore.
5) Repeat the entire process (Steps 1-5) a few times and keep the best answer.

RandomProfileMotifSearch Algorithm


```
    def Profile(seqList, k, start):
        dist = [dict([(base,0.1) for base in "acgt"]) for i in xrange(k)]
        # Count base occurrences in each column
        for t in xrange(len(seqList)):
            for i, base in enumerate(seqList[t][start[t]:start[t]+k]):
                    dist[i][base] += 1.0
        # Normalize (divide by total)
        for i in xrange(k):
            total = sum(dist[i].values())
            for base in "acgt":
            dist[i][base] /= total
        # return Distribution
        return dist
    def Score(seq, si, k, dist):
        prob = 1.0
    for i, base in enumerate(seq[si:si+k]):
        prob *= dist[i][base]
    return prob
```


RandomProfileMotifSearch Algorithm

 def RandomProfileMotifSearch(seqList, k):
start $=[$ random.randint(0 ,len(seqList[t])-k+1) for t in xrange(len(seqList))] bestScore $=0.0$
while True:
distr $=$ Profile(seqList, k, start)
score $=0.0$
for t in xrange(len(seqList)):
score += Score(seqList[t], start[t], k, distr)
if (score <= bestScore):
break
bestScore = score
for t in xrange(len(seqList)):
newStart, newScore $=-1,0.0$
for i in xrange(len(seqList[t])-k+1):
score $=$ Score(seqList[t], i, k, distr)
if (score > newScore):
newStart = i
newScore = score
start[t] = newStart
return score, start

Example


```
def FindMotif(seqList, k, N):
    highScore = 0.0
    for i in xrange(N):
        score, start = RandomProfileMotifSearch(seqList, k)
        if score > highScore:
            motif = [s for s in start]
            highScore = score
    return highScore, motif
%timeit s, m = FindMotif(seqApprox, 10, 100)
print s
for i, si in enumerate(m):
    print si, seqApprox[i][si:si+10]
1 loops, best of 3: 457 ms per loop
0.297843115489
17 tagatctgaa
4 7 \text { tggatccgaa}
1 8 \text { tagacccgaa}
33 taaatccgaa
21 taggtccaaa
tagattcgaa
4 6 ~ c a g a t c c g a a ~
7 0 ~ t a g a t c c g t a ~
16 tagatccaaa
65 tcgatccgaa
```


RandomProfileMotifSearch Analysis

- Since we choose starting positions randomly, there is little chance that our guess will be close to an optimal motif, meaning it will take a very long time to find the optimal motif.
- It is unlikely that the random starting positions will lead us to the correct solution at all.
- In practice, this algorithm is run many times, $O(n)$, with the hope that random starting positions will be close to the optimum solution simply by chance.
- Can we do better than a random guess and then following a greedy path?

