MA ANA MX

Randomized Algorithms

4/25/16

Comp 555

Spring 2016

Randomized Algorithms

- Randomized algorithms incorporate random, rather than deterministic, decisions
- Commonly used in situations where no exact and/or fast algorithm is known

- Works for algorithms that behave well on typical data, but poorly in special cases
- Main advantage is that no input can reliably produce worst-case results because the algorithm runs differently each time.

Select

- Select(L, k) finds the kth smallest element in L
- Select(L,1) find the smallest...
 - Well known O(n) algorithm

```
minv = HUGE
for v in L:
    if (v < minv):
        minv = v</pre>
```

• Select(L, len(L)/2) find the median...

- How?

- median = sorted(L)[len(L)/2] \rightarrow O(n logn)
- Can we find medians, or 1st quartiles in O(n)?

Select Recursion

- Select(L, k) finds the kth smallest element in L
 - Select an element *m* from unsorted list **L** and partition L the array into two smaller lists:

 \mathbf{L}_{lo} - elements smaller than m

and

 \mathbf{L}_{hi} - elements larger than m

• If $len(\mathbf{L}_{lo}) > k$ then Select (\mathbf{L}_{lo}, k) else if $k > len(\mathbf{L}_{lo}) + 1$ then Select $(\mathbf{L}_{hi'}, k - (len(\mathbf{L}_{lo}) + 1))$ else *m* is the kth smallest element

Example of Select(L, 5)

Given an array: **L** = { 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 }

Step 1: Choose the first element as *m*

Example of Select(L,5) (cont'd)

<u>Step 2</u>: Split the array into L_{lo} and L_{hi}

Example of Select(L,5) (cont'd)

<u>Step 3</u>: Recursively call Select on either \mathbf{L}_{lo} or \mathbf{L}_{hi} until len (\mathbf{L}_{lo}) +1 = k, then return *m*.

$$len(L_{lo}) > k = 5 \rightarrow Select(\{3, 2, 4, 5, 1, 0\}, 5)$$

$$m = 3$$

$$L_{lo} = \{2, 1, 0\} \quad L_{hi} = \{4, 5\}$$

$$k = 5 > len(L_{lo}) + 1 \rightarrow Select(\{4, 5\}, 5 - 3 - 1)$$

$$m = 4$$

$$L_{lo} = \{empty\}, L_{hi} = \{5\}$$

k = 1 == len(L_{lo}) + 1 → return 4

Select Code

```
def select(L, k):
    value = L[0]
    Llo = [t for t in data if t < value]</pre>
    Lhi = [t for t in data if t > value]
    below = len(Llo) + 1
    if (k < len(Llo)):
        return select(Llo, k)
    elif (k > below):
        return select(Lhi, k - below)
    else:
        return value
```


Select with Good Splits

- Runtime depends on our selection of *m*:
 - A good selection will split L evenly such that

 $|\mathbf{L}_{lo}| = |\mathbf{L}_{hi}| = |\mathbf{L}|/2$

- The recurrence relation is: T(n) = T(n/2)

 $n + n/2 + n/4 + n/8 + n/16 + \dots = 2n \rightarrow O(n)$ Same as search for minimum

Select with Bad Splits

However, a poor selection will split **L** unevenly and in the worst case, all elements will be greater or less than *m* so that one Sublist is full and the other is empty.

For a poor selection, the recurrence relation is

$$T(n) = T(n-1)$$

In this case, the runtime is $O(n^2)$.

Our dilemma:

O(n) or $O(n^2)$,

depending on the list... or $O(n \log n)$ independent of it

Select Analysis (cont'd)

- Select seems risky compared to Sort
- To improve Select, we need to choose *m* to give good 'splits'
- It can be proven that to achieve O(*n*) running time, we don't need a perfect splits, just reasonably good ones.
- In fact, if both subarrays are at least of size *n*/4, then running time will be O(*n*).
- This implies that half of the choices of *m* make good splitters.

A Randomized Approach

- To improve Select, *randomly* select *m*.
- Since half of the elements will be good splitters, if we choose *m* at random we will get a 50% chance that *m* will be a good choice.
- This approach will make sure that no matter what input is received, the expected running time is small.

Randomized Select

```
def randomizedSelect(L, k):
    value = random.choice(L)
    Llo = [t for t in data if t < value]
    Lhi = [t for t in data if t > value]
    below = len(Llo) + 1
    if (k < len(Llo)):
        return randomizedSelect(Llo, k)
    elif (k > below):
        return randomizedSelect(Lhi, k-below)
    else:
        return value
```

RandomizedSelect Analysis

- Worst case runtime: $O(n^2)$
- *Expected runtime*: O(*n*).
- Expected runtime is a good measure of the performance of randomized algorithms, often more informative than worst case runtimes.
- Worst case runtimes are rarely repeated
- RandomizedSelect always returns the correct answer, which offers a way to classify Randomized Algorithms.

Types of Randomized Algorithms

- Las Vegas Algorithms always produce the correct solution (i.e. randomizedSelect)
- Monte Carlo Algorithms do not always return the correct solution.

Of course, Las Vegas Algorithms are always preferred, but they are often hard to come by.

Recall the Motif Finding Problem

Motif Finding Problem: Given a list of *t* sequences each of length *n*, find the "best" pattern of length *k* that appears in each of the *t* sequences.

A New Motif Finding Approach

- Motif Finding Problem: Given a list of *t* length *n* sequences, find the best near-matching pattern of length *k* in each sequence.
- **Previously:** we have solved the Motif Finding Problem using a Branch-and-Bound or a Exhaustive techniques.
- Now: Randomly select possible locations and find a way to change those locations in an attempt to converge to the hidden motif.

Profiles Revisited

- Let s = (s₁,...,s_t) be the starting positions for k-mers in our t sequences.
- The substrings corresponding to these starting positions will form:
 - t x k alignment matrix
 4 x k profile matrix*

* Note that we now define the profile matrix in terms of frequency, not counts as before.

Scoring Strings with a Profile

- Let k-mer $\mathbf{a} = a_1, a_2, a_3, \dots a_k$
- *P*(**a** | **P**) is defined as the probability that an *k*-mer **a** was created by the Profile distribution **P**.
- If a is very similar to the consensus string of P then P(a | P) will be high
- If **a** is very different, then $P(\mathbf{a} | \mathbf{P})$ will be low.

$$k$$

$$Prob(\mathbf{a} \mid \mathbf{P}) = \prod_{i=1}^{k} p(a_{i'}i)$$

Scoring Strings with a Profile (cont'd)

Given a profile: **P** =

А	1/2	7/8	3/8	0	1/8	0
С	1/8	0	1/2	5/8	3/8	0
Т	1/8	1/8	0	0	1/4	7/8
G	1/4	0	1/8	3/8	1/4	1/8

The probability of the consensus string: *Prob*(**aaacct**|**P**) = ???

Scoring Strings with a Profile (cont'd)

Given a profile: **P** =

А	1/2	7/8	3/8	0	1/8	0
С	1/8	0	1/2	5/8	3/8	0
Т	1/8	1/8	0	0	1/4	7/8
G	1/4	0	1/8	3/8	1/4	1/8

The probability of the consensus string: $Prob(aaacct|P) = 1/2 \times 7/8 \times 3/8 \times 5/8 \times 3/8 \times 7/8 = .033646$

Scoring Strings with a Profile (cont'd)

Given a profile: **P** =

А	1/2	7/8	3/8	0	1/8	0
С	1/8	0	1/2	5/8	3/8	0
Т	1/8	1/8	0	0	1/4	7/8
G	1/4	0	1/8	3/8	1/4	1/8

The probability of the consensus string: $Prob(aaacct|P) = 1/2 \times 7/8 \times 3/8 \times 5/8 \times 3/8 \times 7/8 = .033646$

Probability of a different string: *Prob*(**atacag**|**P**) = 1/2 x 1/8 x 3/8 x 5/8 x 1/8 x 1/8 = .001602

P-Most Probable *k*-mer

• Define the **P**-most probable *k*-mer from a sequence as an *k*-mer in that sequence which has the highest probability of being created from the profile **P**.

		А	1/2	7/8	3/8	0	1/8	0
D	_	С	1/8	0	1/2	5/8	3/8	0
Ρ =	-	Т	1/8	1/8	0	0	1/4	7/8
		G	1/4	0	1/8	3/8	1/4	1/8

Given a sequence = ctataaaccttacatc, find the k-mer that best matches the given profile

А	1/2	7/8	3/8	0	1/8	0
С	1/8	0	1/2	5/8	3/8	0
Т	1/8	1/8	0	0	1/4	7/8
G	1/4	0	1/8	3/8	1/4	1/8

Find the *Prob*(**a**|**P**) of every possible 6-mer: First try: **ctataaaccttacatc** Second try: **ctataaaccttacatc** Third try: **ctataaaccttacatc**

-Continue this process to evaluate every possible 6-mer

Compute *prob*(**a**|**P**) for every possible 6-mer:

String, Highlighted in Red	Calculations	prob(a P)
ctataa accttacat	1/8 x 1/8 x 3/8 x 0 x 1/8 x 0	0
ctataaaccttacat	1/2 x 7/8 x 0 x 0 x 1/8 x 0	0
ctataaaccttacat	1/2 x 1/8 x 3/8 x 0 x 1/8 x 0	0
ctataaaccttacat	1/8 x 7/8 x 3/8 x 0 x 3/8 x 0	0
ctataaaccttacat	1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8	.0336
ctataaaccttacat	1/2 x 7/8 x 1/2 x 5/8 x 1/4 x 7/8	.0299
ctataaaccttacat	$1/2 \ge 0 \ge 1/2 \ge 0 = 1/4 \ge 0$	0
ctataaaccttacat	1/8 x 0 x 0 x 0 x 0 x 1/8 x 0	0
ctataaac <mark>cttaca</mark> t	1/8 x 1/8 x 0 x 0 x 3/8 x 0	0
ctataaacc <mark>ttacat</mark>	1/8 x 1/8 x 3/8 x 5/8 x 1/8 x 7/8	.0004

P-Most Probable 6-mer in the sequence is aaacct:

String, Highlighted in Red	Calculations	<i>Prob</i> (a P)
ctataa accttacat	1/8 x 1/8 x 3/8 x 0 x 1/8 x 0	0
c <mark>tataaa</mark> ccttacat	1/2 x 7/8 x 0 x 0 x 1/8 x 0	0
ctataaaccttacat	1/2 x 1/8 x 3/8 x 0 x 1/8 x 0	0
ctataaaccttacat	1/8 x 7/8 x 3/8 x 0 x 3/8 x 0	0
ctataaaccttacat	1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8	.0336
ctataaaccttacat	1/2 x 7/8 x 1/2 x 5/8 x 1/4 x 7/8	.0299
ctataaaccttacat	$1/2 \ge 0 \ge 1/2 \ge 0 = 1/4 \ge 0$	0
ctataaaccttacat	1/8 x 0 x 0 x 0 x 0 x 1/8 x 0	0
ctataaac <mark>cttaca</mark> t	1/8 x 1/8 x 0 x 0 x 3/8 x 0	0
ctataaacc <mark>ttacat</mark>	1/8 x 1/8 x 3/8 x 5/8 x 1/8 x 7/8	.0004

aaacct is the **P**-most probable 6-mer in:

ctataaaccttacatc

because Prob(aaacct|P) = .0336 is greater than the Prob(a|P) of any other 6-mer in the sequence.

Dealing with Zeroes

- In our toy example prob(a | P)=0 in many cases.
 In practice, there will be enough sequences so that the number of elements in the profile with a frequency of zero is small.
- To avoid many entries with prob(a | P)=0, there exist techniques to equate zero to a very small number so that one zero does not make the entire probability of a string zero. Pseudo counts (assigning a prior probability based on our best guess).

P-Most Probable *k*-mers in Many Sequences

• Find the **P**-most probable *k*-mer in each of the "t" sequences.

	А	1/2	7/8	3/8	0	1/8	0
D-	С	1/8	0	1/2	5/8	3/8	0
Γ-	Т	1/8	1/8	0	0	1/4	7/8
	G	1/4	0	1/8	3/8	1/4	1/8

ctataaacgttacatc
atagcgattcgactg
cagcccagaaccct
cggtataccttacatc
tgcattcaatagctta
tatcctttccactcac
ctccaaatcctttaca

ggtcatcctttatcct

P-Most Probable *k*-mers in Many Sequences (cont'd)

MPQM

atagcgattcgactg	t	g	С	а	а	а	1
	g	С	g	а	t	а	2
cagcccagaaccct	t	С	С	С	а	а	3
	t	С	С	а	а	g	4
cggtgaaccttacatc	t	С	g	а	t	а	5
tacattaattaactta	g	t	С	С	а	g	6
lycallcallayclla	t	t	С	С	t	а	7
tatectatecaeteae	t	t	С	С	а	t	8
	0	0	0	4/8	5/8	5/8	А
ctccaaatcctttaca	0	4/8	6/8	4/8	0	0	С
	6/8	3/8	0	0	3/8	1/8	Т
agtctacctttatcct	2/8	1/8	2/8	0	0	2/8	G

ctataaacgttacatc

P-Most Probable *k*-mers give a new profile

Comparing New and Old Profiles

1	a	а	а	С	g	t					
2	a	t	а	g	С	g					
3	a	a	С	С	С	t					
4	g	a	а	С	С	t					
5	а	t	а	g	С	t					
6	g	а	С	С	t	g					
7	а	t	С	С	t	t					
8	t	а	С	С	t	t					
А	5/8	5/8	4/8	0	0	0	Α	1/2	7/8	3/8	0
С	0	0	4/8	6/8	4/8	0		, 1/2	,	1/2	5/9
Т	1/8	3/8	0	0	3/8	6/8		1/0	1/0	1/2	3/0
G	2/8	0	0	2/8	1/8	2/8		1/8	1/8	U 1/9	2/9

Red – frequency increased, **Blue** – frequency decreased

1/8

3/8

1/4

1/4

0

0

7/8

1/8

Random Profile Motif Search

Use P-Most probable *k*-mers to adjust start positions until we reach a "best" profile; this is the motif.

- 1) Select random starting positions.
- 3) Create a profile **P** from the substrings at these starting positions.
- 4) Find the **P**-most probable *k*-mer **a** in each sequence and change the starting position to the starting position of **a**.
- 5) Compute a new profile based on the new starting positions after each iteration and proceed until we cannot increase the score anymore.
- 6) Repeat the entire process (Steps 1-5) a few times and keep the best answer.

RandomProfileMotifSearch Algorithm

```
def Profile(seqList, k, start):
  dist = [dict([(base,0.1) for base in "acgt"]) for i in xrange(k)]
  # Count base occurrences in each column
  for t in xrange(len(seqList)):
     for i, base in enumerate(seqList[t][start[t]:start[t]+k]):
        dist[i][base] += 1.0
  # Normalize (divide by total)
  for i in xrange(k):
     total = sum(dist[i].values())
     for base in "acgt":
        dist[i][base] /= total
  # return Distribution
  return dist
def Score(seq, si, k, dist):
  prob = 1.0
  for i, base in enumerate(seg[si:si+k]):
     prob *= dist[i][base]
  return prob
```


RandomProfileMotifSearch Algorithm

```
def RandomProfileMotifSearch(seqList, k):
  start = [random.randint(0,len(seqList[t])-k+1) for t in xrange(len(seqList))]
  bestScore = 0.0
  while True:
     distr = Profile(seqList, k, start)
     score = 0.0
     for t in xrange(len(seqList)):
       score += Score(seqList[t], start[t], k, distr)
     if (score <= bestScore):
       break
     bestScore = score
     for t in xrange(len(seqList)):
       newStart, newScore = -1, 0.0
       for i in xrange(len(seqList[t])-k+1):
          score = Score(seqList[t], i, k, distr)
          if (score > newScore):
             newStart = i
             newScore = score
       start[t] = newStart
  return score, start
```


Example

```
def FindMotif(seqList, k, N):
    highScore = 0.0
    for i in xrange(N):
        score, start = RandomProfileMotifSearch(seqList, k)
        if score > highScore:
            motif = [s for s in start]
            highScore = score
    return highScore, motif
%timeit s, m = FindMotif(seqApprox, 10, 100)
print s
for i, si in enumerate(m):
    print si, seqApprox[i][si:si+10]
1 loops, best of 3: 457 ms per loop
0.297843115489
17 tagatctgaa
47 tggatccgaa
18 tagacccgaa
33 taaatccgaa
21 taggtccaaa
0 tagattcgaa
46 cagateegaa
70 tagatccgta
16 tagatccaaa
65 tcgatccgaa
```


RandomProfileMotifSearch Analysis

- Since we choose starting positions randomly, there is little chance that our guess will be close to an optimal motif, meaning it will take a very long time to find the optimal motif.
- It is unlikely that the random starting positions will lead us to the correct solution at all.
- In practice, this algorithm is run many times, *O*(*n*), with the hope that random starting positions will be close to the optimum solution simply by chance.
- Can we do better than a random guess and then following a greedy path?