
4/25/16 Comp 555 Spring 2016 1

4/25/16 Comp 555 Spring 2016 2

•  Randomized algorithms incorporate random,
rather than deterministic, decisions

•  Commonly used in situations
where no exact and/or fast
algorithm is known

• Works for algorithms that behave well on typical
data, but poorly in special cases

• Main advantage is that no input can reliably
produce worst-case results because the
algorithm runs differently each time.

4/25/16 Comp 555 Spring 2016 3

•  Select(L, k) finds the kth smallest element in L
•  Select(L,1) find the smallest…

–  Well known O(n) algorithm

•  Select(L, len(L)/2) find the median…
–  How?
–  median = sorted(L)[len(L)/2] ! O(n logn)

•  Can we find medians, or 1st quartiles in O(n)?

minv = HUGE
for v in L:
 if (v < minv):
 minv = v

4/25/16 Comp 555 Spring 2016 4

•  Select(L, k) finds the kth smallest element in L
–  Select an element m from unsorted list L and

partition L the array into two smaller lists:

 Llo - elements smaller than m
 and
 Lhi - elements larger than m

•  If len(Llo) > k then
 Select(Llo, k)

else if k > len(Llo) + 1 then
 Select(Lhi, k – (len(Llo) + 1))

else m is the kth smallest element

4/25/16 Comp 555 Spring 2016 5

Given an array: L = { 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 }

Step 1: Choose the first element as m

 L = { 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 }

Our Selection

4/25/16 Comp 555 Spring 2016 6

Step 2: Split the array into Llo and Lhi

 Llo = { 3, 2, 4, 5, 1, 0 }

 L = { 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 }

 Lhi = { 8, 7, 9 }

4/25/16 Comp 555 Spring 2016 7

Step 3: Recursively call Select on either Llo or Lhi
until len(Llo)+1 = k, then return m.
len(Llo) > k = 5 ! Select({ 3, 2, 4, 5, 1, 0 }, 5)

m = 3

Llo = { 2, 1, 0 } Lhi = { 4, 5 }

m = 4
Llo = { empty }, Lhi = { 5 }

k = 5 > len(Llo) +1 ! Select({4, 5 }, 5 - 3 - 1)

k = 1 == len(Llo) + 1 ! return 4

4/25/16 Comp 555 Spring 2016 8

def select(L, k):
 value = L[0]
 Llo = [t for t in data if t < value]
 Lhi = [t for t in data if t > value]
 below = len(Llo) + 1
 if (k < len(Llo)):
 return select(Llo, k)
 elif (k > below):
 return select(Lhi, k - below)
 else:
 return value

4/25/16 Comp 555 Spring 2016 9

•  Runtime depends on our selection of m:

 - A good selection will split L evenly such that

 |Llo | = |Lhi |= |L|/2

 - The recurrence relation is:
 T(n) = T(n/2)

 n + n/2 + n/4 + n/8 + n/16 + ….= 2n ! O(n)
Same as search
for minimum

4/25/16 Comp 555 Spring 2016 10

However, a poor selection will split L unevenly and in the
worst case, all elements will be greater or less than m so
that one Sublist is full and the other is empty.

For a poor selection, the recurrence relation is
 T(n) = T(n-1)

In this case, the runtime is O(n2).

Our dilemma:
O(n) or O(n2),
 depending on the list… or O(n log n) independent of it

I could have sorted
 first and done
 better

4/25/16 Comp 555 Spring 2016 11

•  Select seems risky compared to Sort
•  To improve Select, we need to choose m

to give good ‘splits’
•  It can be proven that to achieve O(n) running

time, we don’t need a perfect splits, just
reasonably good ones.

•  In fact, if both subarrays are at least of size n/4,
then running time will be O(n).

•  This implies that half of the choices of m make
good splitters.

4/25/16 Comp 555 Spring 2016 12

•  To improve Select, randomly select m.
•  Since half of the elements will be good splitters,

if we choose m at random we will get a 50%
chance that m will be a good choice.

•  This approach will make sure that no matter
what input is received, the expected running
time is small.

4/25/16 Comp 555 Spring 2016 13

def randomizedSelect(L, k):
 value = random.choice(L)
 Llo = [t for t in data if t < value]
 Lhi = [t for t in data if t > value]
 below = len(Llo) + 1
 if (k < len(Llo)):
 return randomizedSelect(Llo, k)
 elif (k > below):
 return randomizedSelect(Lhi, k-below)
 else:
 return value

4/25/16 Comp 555 Spring 2016 14

• Worst case runtime: O(n2)
•  Expected runtime: O(n).
•  Expected runtime is a good measure of the

performance of randomized algorithms, often
more informative than worst case runtimes.

• Worst case runtimes are rarely repeated
•  RandomizedSelect always returns the correct

answer, which offers a way to classify
Randomized Algorithms.

4/25/16 Comp 555 Spring 2016 15

•  Las Vegas Algorithms – always produce the
correct solution (i.e. randomizedSelect)

• Monte Carlo Algorithms – do not always return
the correct solution.

 Of course, Las Vegas Algorithms are always
preferred, but they are often hard to come by.

cctgatagacgctatctggctatccaGgtacTtaggtcctctgtgcgaatctatgcgtttccaaccat

agtactggtgtacatttgatCcAtacgtacaccggcaacctgaaacaaacgctcagaaccagaagtgc

aaacgtTAgtgcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt

agcctccgatgtaagtcatagctgtaactattacctgccacccctattacatcttacgtCcAtataca

ctgttatacaacgcgtcatggcggggtatgcgttttggtcgtcgtacgctcgatcgttaCcgtacgGc

4/25/16 Comp 555 Spring 2016 16

Motif Finding Problem: Given a list of t sequences
each of length n, find the “best” pattern of length k
that appears in each of the t sequences.

k = 8

t=5

DNA

n = 69

4/25/16 Comp 555 Spring 2016 17

• Motif Finding Problem: Given a list of t length
n sequences, find the best near-matching pattern
of length k in each sequence.

•  Previously: we have solved the Motif Finding
Problem using a Branch-and-Bound or a
Exhaustive techniques.

• Now: Randomly select possible locations and
find a way to change those locations in an
attempt to converge to the hidden motif.

4/25/16 Comp 555 Spring 2016 18

•  Let s = (s1,...,st) be the starting positions for
k-mers in our t sequences.

•  The substrings corresponding
to these starting positions
will form:

 - t x k alignment matrix
 - 4 x k profile matrix*

 * Note that we now define the
profile matrix in terms of
frequency, not counts as before.

 a G g t a c T t
 C c A t a c g t
 a c g t T A g t
 a c g t C c A t
 C c g t a c g G

 A 0.6 0.0 0.2 0.0 0.6 0.2 0.2 0.0
 C 0.4 0.8 0.0 0.0 0.2 0.8 0.0 0.0
 G 0.0 0.2 0.8 0.0 0.0 0.0 0.6 0.2
 T 0.0 0.0 0.0 1.0 0.2 0.0 0.2 0.8

 X a c g t a c g t

P(X|profile)=0.6*0.8*0.8*1.0*0.6*0.8*0.6*0.8 = 0.0885

l

t

4

4/25/16 Comp 555 Spring 2016 19

•  Let k-mer a = a1, a2, a3, … ak
•  P(a|P) is defined as the probability that an

k-mer a was created by the Profile distribution P.
•  If a is very similar to the consensus string of P

then P(a|P) will be high
•  If a is very different, then P(a|P) will be low.
 k
 Prob(a|P) =Π p(ai,i)
 i=1

4/25/16 Comp 555 Spring 2016 20

Given a profile: P =

A 1/2 7/8 3/8 0 1/8 0

C 1/8 0 1/2 5/8 3/8 0

T 1/8 1/8 0 0 1/4 7/8

G 1/4 0 1/8 3/8 1/4 1/8

 Prob(aaacct|P) = ???
The probability of the consensus string:

4/25/16 Comp 555 Spring 2016 21

Given a profile: P =

A 1/2 7/8 3/8 0 1/8 0

C 1/8 0 1/2 5/8 3/8 0

T 1/8 1/8 0 0 1/4 7/8

G 1/4 0 1/8 3/8 1/4 1/8

 Prob(aaacct|P) = 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 = .033646
The probability of the consensus string:

4/25/16 Comp 555 Spring 2016 22

Given a profile: P =

A 1/2 7/8 3/8 0 1/8 0

C 1/8 0 1/2 5/8 3/8 0

T 1/8 1/8 0 0 1/4 7/8

G 1/4 0 1/8 3/8 1/4 1/8

Prob(atacag|P) = 1/2 x 1/8 x 3/8 x 5/8 x 1/8 x 1/8 = .001602

 Prob(aaacct|P) = 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 = .033646
The probability of the consensus string:

Probability of a different string:

4/25/16 Comp 555 Spring 2016 23

•  Define the P-most probable k-mer from a sequence as an
k-mer in that sequence which has the highest probability
of being created from the profile P.

A 1/2 7/8 3/8 0 1/8 0

C 1/8 0 1/2 5/8 3/8 0

T 1/8 1/8 0 0 1/4 7/8

G 1/4 0 1/8 3/8 1/4 1/8

P =

Given a sequence = ctataaaccttacatc, find the k-mer
that best matches the given profile

4/25/16 Comp 555 Spring 2016 24

Third try: c t a t a a a c c t t a c a t c

Second try: c t a t a a a c c t t a c a t c

First try: c t a t a a a c c t t a c a t c

A 1/2 7/8 3/8 0 1/8 0

C 1/8 0 1/2 5/8 3/8 0

T 1/8 1/8 0 0 1/4 7/8

G 1/4 0 1/8 3/8 1/4 1/8

Find the Prob(a|P) of every possible 6-mer:

-Continue this process to evaluate every possible 6-mer

4/25/16 Comp 555 Spring 2016 25

String, Highlighted in Red Calculations prob(a|P)

ctataaaccttacat 1/8 x 1/8 x 3/8 x 0 x 1/8 x 0 0

ctataaaccttacat 1/2 x 7/8 x 0 x 0 x 1/8 x 0 0

ctataaaccttacat 1/2 x 1/8 x 3/8 x 0 x 1/8 x 0 0

ctataaaccttacat 1/8 x 7/8 x 3/8 x 0 x 3/8 x 0 0

ctataaaccttacat 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 .0336

ctataaaccttacat 1/2 x 7/8 x 1/2 x 5/8 x 1/4 x 7/8 .0299

ctataaaccttacat 1/2 x 0 x 1/2 x 0 1/4 x 0 0

ctataaaccttacat 1/8 x 0 x 0 x 0 x 0 x 1/8 x 0 0

ctataaaccttacat 1/8 x 1/8 x 0 x 0 x 3/8 x 0 0

ctataaaccttacat 1/8 x 1/8 x 3/8 x 5/8 x 1/8 x 7/8 .0004

Compute prob(a|P) for every possible 6-mer:

4/25/16 Comp 555 Spring 2016 26

String, Highlighted in Red Calculations Prob(a|P)

ctataaaccttacat 1/8 x 1/8 x 3/8 x 0 x 1/8 x 0 0

ctataaaccttacat 1/2 x 7/8 x 0 x 0 x 1/8 x 0 0

ctataaaccttacat 1/2 x 1/8 x 3/8 x 0 x 1/8 x 0 0

ctataaaccttacat 1/8 x 7/8 x 3/8 x 0 x 3/8 x 0 0

ctataaaccttacat 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 .0336

ctataaaccttacat 1/2 x 7/8 x 1/2 x 5/8 x 1/4 x 7/8 .0299

ctataaaccttacat 1/2 x 0 x 1/2 x 0 1/4 x 0 0

ctataaaccttacat 1/8 x 0 x 0 x 0 x 0 x 1/8 x 0 0

ctataaaccttacat 1/8 x 1/8 x 0 x 0 x 3/8 x 0 0

ctataaaccttacat 1/8 x 1/8 x 3/8 x 5/8 x 1/8 x 7/8 .0004

P-Most Probable 6-mer in the sequence is aaacct:

4/25/16 Comp 555 Spring 2016 27

ctataaaccttacatc
because Prob(aaacct|P) = .0336 is greater
than the Prob(a|P) of any other 6-mer in the
sequence.

aaacct is the P-most probable 6-mer in:

4/25/16 Comp 555 Spring 2016 28

•  In our toy example prob(a|P)=0 in many cases.
In practice, there will be enough sequences so
that the number of elements in the profile with a
frequency of zero is small.

•  To avoid many entries with prob(a|P)=0, there
exist techniques to equate zero to a very small
number so that one zero does not make the
entire probability of a string zero. Pseudo counts
(assigning a prior probability based on our best
guess).

4/25/16 Comp 555 Spring 2016 29

•  Find the P-most probable
k-mer in each of the “t”
sequences.

ctataaacgttacatc

atagcgattcgactg

cagcccagaaccct

cggtataccttacatc

tgcattcaatagctta

tatcctttccactcac

ctccaaatcctttaca

ggtcatcctttatcct

A 1/2 7/8 3/8 0 1/8 0

C 1/8 0 1/2 5/8 3/8 0

T 1/8 1/8 0 0 1/4 7/8

G 1/4 0 1/8 3/8 1/4 1/8

P=

A 1/2 7/8 3/8 0 1/8 0

C 1/8 0 1/2 5/8 3/8 0

T 1/8 1/8 0 0 1/4 7/8

G 1/4 0 1/8 3/8 1/4 1/8

4/25/16 Comp 555 Spring 2016 30

ctataaacgttacatc

atagcgattcgactg

cagcccagaaccct

cggtgaaccttacatc

tgcattcaatagctta

tgtcctgtccactcac

ctccaaatcctttaca

ggtctacctttatcct

P-Most Probable k-mers give a new profile

1 a a a c g t

2 a t a g c g

3 a a c c c t

4 g a a c c t

5 a t a g c t

6 g a c c t g

7 a t c c t t

8 t a c c t t

A 5/8 5/8 4/8 0 0 0

C 0 0 4/8 6/8 4/8 0

T 1/8 3/8 0 0 3/8 6/8

G 2/8 0 0 2/8 1/8 2/8

4/25/16 Comp 555 Spring 2016 31

Red – frequency increased, Blue – frequency decreased

1 a a a c g t

2 a t a g c g

3 a a c c c t

4 g a a c c t

5 a t a g c t

6 g a c c t g

7 a t c c t t

8 t a c c t t

A 5/8 5/8 4/8 0 0 0

C 0 0 4/8 6/8 4/8 0

T 1/8 3/8 0 0 3/8 6/8

G 2/8 0 0 2/8 1/8 2/8

A 1/2 7/8 3/8 0 1/8 0

C 1/8 0 1/2 5/8 3/8 0

T 1/8 1/8 0 0 1/4 7/8

G 1/4 0 1/8 3/8 1/4 1/8

4/25/16 Comp 555 Spring 2016 32

Use P-Most probable k-mers to adjust start positions until
we reach a “best” profile; this is the motif.

1)  Select random starting positions.
3)  Create a profile P from the substrings at these starting

positions.
4)  Find the P-most probable k-mer a in each sequence and

change the starting position to the starting position of a.
5)  Compute a new profile based on the new starting

positions after each iteration and proceed until we
cannot increase the score anymore.

6)  Repeat the entire process (Steps 1-5) a few times and
keep the best answer.

4/25/16 Comp 555 Spring 2016 33

def Profile(seqList, k, start):
 dist = [dict([(base,0.1) for base in "acgt"]) for i in xrange(k)]
 # Count base occurrences in each column
 for t in xrange(len(seqList)):
 for i, base in enumerate(seqList[t][start[t]:start[t]+k]):
 dist[i][base] += 1.0
 # Normalize (divide by total)
 for i in xrange(k):
 total = sum(dist[i].values())
 for base in "acgt":
 dist[i][base] /= total
 # return Distribution
 return dist

def Score(seq, si, k, dist):
 prob = 1.0
 for i, base in enumerate(seq[si:si+k]):
 prob *= dist[i][base]
 return prob

4/25/16 Comp 555 Spring 2016 34

def RandomProfileMotifSearch(seqList, k):
 start = [random.randint(0,len(seqList[t])-k+1) for t in xrange(len(seqList))]
 bestScore = 0.0
 while True:
 distr = Profile(seqList, k, start)
 score = 0.0
 for t in xrange(len(seqList)):
 score += Score(seqList[t], start[t], k, distr)
 if (score <= bestScore):
 break
 bestScore = score
 for t in xrange(len(seqList)):
 newStart, newScore = -1, 0.0
 for i in xrange(len(seqList[t])-k+1):
 score = Score(seqList[t], i, k, distr)
 if (score > newScore):
 newStart = i
 newScore = score
 start[t] = newStart
 return score, start

4/25/16 Comp 555 Spring 2016 35

4/25/16 Comp 555 Spring 2016 36

•  Since we choose starting positions randomly, there
is little chance that our guess will be close to an
optimal motif, meaning it will take a very long time
to find the optimal motif.

•  It is unlikely that the random starting positions will
lead us to the correct solution at all.

•  In practice, this algorithm is run many times, O(n),
with the hope that random starting positions will be
close to the optimum solution simply by chance.

•  Can we do better than a random guess and then
following a greedy path?

