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•  Randomized algorithms incorporate random, 
rather than deterministic, decisions 

•  Commonly used in situations  
where no exact and/or fast  
algorithm is known 

• Works for algorithms that behave well on typical 
data, but poorly in special cases 

• Main advantage is that no input can reliably 
produce worst-case results because the 
algorithm runs differently each time. 
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•  Select(L, k) finds the kth smallest element in L 
•  Select(L,1) find the smallest… 

–  Well known O(n) algorithm 

•  Select(L, len(L)/2) find the median… 
–  How?  
–  median = sorted(L)[len(L)/2]    ! O(n logn) 

•  Can we find medians, or 1st quartiles in O(n)? 

minv = HUGE
for v in L:
    if (v < minv):
        minv = v
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•  Select(L, k) finds the kth smallest element in L 
–  Select an element m from unsorted list L and  

partition L the array into two smaller lists:  

      Llo - elements smaller than m 
 and 
        Lhi - elements larger than m 

•  If len(Llo) > k then  
 Select(Llo, k) 

else if k > len(Llo) + 1 then  
 Select(Lhi, k – (len(Llo) + 1)) 

else m is the kth smallest element 
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Given an array: L = { 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 } 

Step 1:  Choose the first element as m 

      L = { 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 } 

Our  Selection 



4/25/16 Comp 555   Spring 2016 6 

Step 2:  Split the array into Llo and Lhi 

                                             Llo = { 3,    2,    4,    5,    1,    0 } 

 L = {    6,     3,     2,     8,     4,     5,     1,     7,     0,     9 } 

              Lhi = { 8,     7,     9 } 
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Step 3: Recursively call Select on either Llo or Lhi 
until len(Llo)+1 = k, then return m. 
len(Llo) > k = 5  ! Select({ 3,  2,  4,  5,  1,  0 }, 5) 

m = 3 

Llo = { 2,  1,  0 }    Lhi = { 4, 5 }  

m = 4 
Llo = { empty },  Lhi = {  5  } 

k = 5 > len(Llo) +1  ! Select({4,  5 }, 5 - 3 - 1) 

k  = 1  ==  len(Llo) + 1 ! return 4 
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def select(L, k):
    value = L[0]
    Llo = [t for t in data if t < value]
    Lhi = [t for t in data if t > value]
    below = len(Llo) + 1
    if (k < len(Llo)):
        return select(Llo, k)
    elif (k > below):
        return select(Lhi, k - below)
    else:
        return value
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•  Runtime depends on our selection of m: 

 - A good selection will split L evenly such that 

  |Llo | = |Lhi |= |L|/2 

 - The recurrence relation is: 
  T(n)  =  T(n/2) 

   n + n/2 + n/4 + n/8 + n/16 + ….= 2n ! O(n) 
Same as search 
for minimum 
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However, a poor selection will split L unevenly and in the  
worst case, all elements will be greater or less than m so  
that one Sublist is full and the other is empty.   

For a poor selection, the recurrence relation is 
  T(n)  =  T(n-1) 

In this case, the runtime is O(n2). 

Our dilemma:  
O(n) or O(n2), 
 depending on the list… or O(n log n) independent of it 

   

I could have sorted
 first and done  
 better 
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•  Select seems risky compared to Sort 
•  To improve Select, we need to choose m  

to give good ‘splits’ 
•  It can be proven that to achieve O(n) running 

time, we don’t need a perfect splits, just 
reasonably good ones.  

•  In fact, if both subarrays are at least of size n/4, 
then running time will be O(n). 

•  This implies that half of the choices of m make 
good splitters.   
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•  To improve Select, randomly select m. 
•  Since half of the elements will be good splitters, 

if we choose m at random we will get a 50% 
chance that m will be a good choice. 

•  This approach will make sure that no matter 
what input is received, the expected running 
time is small. 
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def randomizedSelect(L, k):
    value = random.choice(L)
    Llo = [t for t in data if t < value]
    Lhi = [t for t in data if t > value]
    below = len(Llo) + 1
    if (k < len(Llo)):
        return randomizedSelect(Llo, k)
    elif (k > below):
        return randomizedSelect(Lhi, k-below)
    else:
        return value
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• Worst case runtime: O(n2) 
•  Expected runtime: O(n). 
•  Expected runtime is a good measure of the 

performance of randomized algorithms, often 
more informative than worst case runtimes. 

• Worst case runtimes are rarely repeated  
•  RandomizedSelect always returns the correct 

answer, which offers a way to classify 
Randomized Algorithms. 
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•  Las Vegas Algorithms – always produce the 
correct solution (i.e. randomizedSelect) 

• Monte Carlo Algorithms – do not always return 
the correct solution. 

    Of course, Las Vegas Algorithms are always 
preferred, but they are often hard to come by. 



cctgatagacgctatctggctatccaGgtacTtaggtcctctgtgcgaatctatgcgtttccaaccat 

agtactggtgtacatttgatCcAtacgtacaccggcaacctgaaacaaacgctcagaaccagaagtgc 

aaacgtTAgtgcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt 

agcctccgatgtaagtcatagctgtaactattacctgccacccctattacatcttacgtCcAtataca 

ctgttatacaacgcgtcatggcggggtatgcgttttggtcgtcgtacgctcgatcgttaCcgtacgGc 
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Motif Finding Problem: Given a list of t sequences 
each of length n, find the “best” pattern of length k 
that appears in each of the t sequences. 

k = 8 

t=5 

DNA 

n = 69  
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• Motif Finding Problem: Given a list of t length 
n sequences, find the best near-matching pattern 
of length k in each sequence. 

•  Previously: we have solved the Motif Finding 
Problem using a Branch-and-Bound or a  
Exhaustive techniques. 

• Now: Randomly select possible locations and 
find a way to change those locations in an 
attempt to converge to the hidden motif. 
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•  Let s = (s1,...,st) be the starting positions for  
k-mers in our t sequences.   

•  The substrings corresponding 
to these starting positions  
will form: 

    - t x k alignment matrix  
    - 4 x k profile matrix*  

 * Note that we now define the  
profile matrix in terms of  
frequency,  not counts as before. 

              a   G   g   t   a   c   T   t 
              C   c   A   t   a   c   g   t 
              a   c   g   t   T   A   g   t 
              a   c   g   t   C   c   A   t 
              C   c   g   t   a   c   g   G 
         ____________________________________ 

          A  0.6 0.0 0.2 0.0 0.6 0.2 0.2 0.0 
          C  0.4 0.8 0.0 0.0 0.2 0.8 0.0 0.0 
          G  0.0 0.2 0.8 0.0 0.0 0.0 0.6 0.2 
          T  0.0 0.0 0.0 1.0 0.2 0.0 0.2 0.8 
         ____________________________________ 

        X     a   c   g   t   a   c   g   t 

P(X|profile)=0.6*0.8*0.8*1.0*0.6*0.8*0.6*0.8 = 0.0885   

l 

t 

4 



4/25/16 Comp 555   Spring 2016 19 

•  Let k-mer  a = a1, a2, a3, … ak  
•  P(a|P) is defined as the probability that an  

k-mer a was created by the Profile distribution P.  
•  If a is very similar to the consensus string of P 

then P(a|P)  will be high 
•  If a is very different, then P(a|P) will be low. 
                                               k 
                           Prob(a|P) =Π p(ai,i) 
                                                                i=1 
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Given a profile: P =  

A 1/2 7/8 3/8 0 1/8 0 

C 1/8 0 1/2 5/8 3/8 0 

T 1/8 1/8 0 0 1/4 7/8 

G 1/4 0 1/8 3/8 1/4 1/8 

   Prob(aaacct|P) = ???  
The probability of the consensus string: 
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Given a profile: P =  

A 1/2 7/8 3/8 0 1/8 0 

C 1/8 0 1/2 5/8 3/8 0 

T 1/8 1/8 0 0 1/4 7/8 

G 1/4 0 1/8 3/8 1/4 1/8 

   Prob(aaacct|P) = 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 = .033646 
The probability of the consensus string: 
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Given a profile: P =  

A 1/2 7/8 3/8 0 1/8 0 

C 1/8 0 1/2 5/8 3/8 0 

T 1/8 1/8 0 0 1/4 7/8 

G 1/4 0 1/8 3/8 1/4 1/8 

Prob(atacag|P) = 1/2 x 1/8 x 3/8 x 5/8 x 1/8 x 1/8 = .001602 

   Prob(aaacct|P) = 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 = .033646 
The probability of the consensus string: 

Probability of a different string: 
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•  Define the P-most probable k-mer from a sequence as an 
k-mer in that sequence which has the highest probability 
of being created from the profile P. 

A 1/2 7/8 3/8 0 1/8 0 

C 1/8 0 1/2 5/8 3/8 0 

T 1/8 1/8 0 0 1/4 7/8 

G 1/4 0 1/8 3/8 1/4 1/8 

P   = 

Given a sequence = ctataaaccttacatc, find the k-mer 
that best matches the given profile  
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Third try:  c t a t a a a c c t t a c a t c 

Second try:  c t a t a a a c c t t a c a t c 

First try:  c t a t a a a c c t t a c a t c 

A 1/2 7/8 3/8 0 1/8 0 

C 1/8 0 1/2 5/8 3/8 0 

T 1/8 1/8 0 0 1/4 7/8 

G 1/4 0 1/8 3/8 1/4 1/8 

Find the Prob(a|P) of every possible 6-mer:   

-Continue this process to evaluate every possible 6-mer 
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String, Highlighted in Red Calculations prob(a|P) 

ctataaaccttacat 1/8 x 1/8 x 3/8 x 0 x 1/8 x 0 0 

ctataaaccttacat 1/2 x 7/8 x 0 x 0 x 1/8 x 0 0 

ctataaaccttacat 1/2 x 1/8 x 3/8 x 0 x 1/8 x 0 0 

ctataaaccttacat 1/8 x 7/8 x 3/8 x 0 x 3/8 x 0 0 

ctataaaccttacat 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 .0336 

ctataaaccttacat 1/2 x 7/8 x 1/2 x 5/8 x 1/4 x 7/8 .0299 

ctataaaccttacat 1/2 x 0 x 1/2 x 0 1/4 x 0 0 

ctataaaccttacat 1/8 x 0 x 0 x 0 x 0 x 1/8 x 0 0 

ctataaaccttacat 1/8 x 1/8 x 0 x 0 x 3/8 x 0 0 

ctataaaccttacat 1/8 x 1/8 x 3/8 x 5/8 x 1/8 x 7/8 .0004 

Compute prob(a|P) for every possible 6-mer: 
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String, Highlighted in Red Calculations Prob(a|P) 

ctataaaccttacat 1/8 x 1/8 x 3/8 x 0 x 1/8 x 0 0 

ctataaaccttacat 1/2 x 7/8 x 0 x 0 x 1/8 x 0 0 

ctataaaccttacat 1/2 x 1/8 x 3/8 x 0 x 1/8 x 0 0 

ctataaaccttacat 1/8 x 7/8 x 3/8 x 0 x 3/8 x 0 0 

ctataaaccttacat 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 .0336 

ctataaaccttacat 1/2 x 7/8 x 1/2 x 5/8 x 1/4 x 7/8 .0299 

ctataaaccttacat 1/2 x 0 x 1/2 x 0 1/4 x 0 0 

ctataaaccttacat 1/8 x 0 x 0 x 0 x 0 x 1/8 x 0 0 

ctataaaccttacat 1/8 x 1/8 x 0 x 0 x 3/8 x 0 0 

ctataaaccttacat 1/8 x 1/8 x 3/8 x 5/8 x 1/8 x 7/8 .0004 

P-Most Probable 6-mer in the sequence is aaacct: 
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ctataaaccttacatc 
because Prob(aaacct|P) = .0336  is greater 
than the Prob(a|P) of any other 6-mer in the 
sequence. 

aaacct is the P-most probable 6-mer in: 
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•  In our toy example prob(a|P)=0 in many cases. 
In practice, there will be enough sequences so 
that the number of  elements in the profile with a 
frequency of zero is small. 

•  To avoid many entries with prob(a|P)=0, there 
exist techniques to equate zero to a very small 
number so that one zero does not make the 
entire probability of a string zero. Pseudo counts 
(assigning a prior probability based on our best 
guess). 
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•  Find the P-most probable 
k-mer in each of the “t” 
sequences. 

ctataaacgttacatc 

atagcgattcgactg 

cagcccagaaccct 

cggtataccttacatc 

tgcattcaatagctta 

tatcctttccactcac 

ctccaaatcctttaca 

ggtcatcctttatcct 

A 1/2 7/8 3/8 0 1/8 0 

C 1/8 0 1/2 5/8 3/8 0 

T 1/8 1/8 0 0 1/4 7/8 

G 1/4 0 1/8 3/8 1/4 1/8 

P= 



A 1/2 7/8 3/8 0 1/8 0 

C 1/8 0 1/2 5/8 3/8 0 

T 1/8 1/8 0 0 1/4 7/8 

G 1/4 0 1/8 3/8 1/4 1/8 
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ctataaacgttacatc 

atagcgattcgactg 

cagcccagaaccct 

cggtgaaccttacatc 

tgcattcaatagctta 

tgtcctgtccactcac 

ctccaaatcctttaca 

ggtctacctttatcct 

P-Most Probable k-mers give a new profile 

1 a a a c g t 

2 a t a g c g 

3 a a c c c t 

4 g a a c c t 

5 a t a g c t 

6 g a c c t g 

7 a t c c t t 

8 t a c c t t 

A 5/8 5/8 4/8 0 0 0 

C 0 0 4/8 6/8 4/8 0 

T 1/8 3/8 0 0 3/8 6/8 

G 2/8 0 0 2/8 1/8 2/8 
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Red – frequency increased, Blue – frequency decreased 

1 a a a c g t 

2 a t a g c g 

3 a a c c c t 

4 g a a c c t 

5 a t a g c t 

6 g a c c t g 

7 a t c c t t 

8 t a c c t t 

A 5/8 5/8 4/8 0 0 0 

C 0 0 4/8 6/8 4/8 0 

T 1/8 3/8 0 0 3/8 6/8 

G 2/8 0 0 2/8 1/8 2/8 

A 1/2  7/8 3/8 0 1/8 0 

C 1/8 0 1/2 5/8 3/8 0 

T 1/8 1/8 0 0 1/4 7/8 

G 1/4 0 1/8 3/8 1/4 1/8 
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Use P-Most probable k-mers to adjust start positions until 
we reach a “best” profile; this is the motif. 

1)  Select random starting positions. 
3)  Create a profile P from the substrings at these starting 

positions. 
4)  Find the P-most probable k-mer a in each sequence and 

change the starting position to the starting position of a. 
5)  Compute a new profile based on the new starting 

positions after each iteration and proceed until we 
cannot increase the score anymore. 

6)  Repeat the entire process (Steps 1-5) a few times and 
keep the best answer. 



4/25/16 Comp 555   Spring 2016 33 

def Profile(seqList, k, start): 
    dist = [dict([(base,0.1) for base in "acgt"]) for i in xrange(k)] 
    # Count base occurrences in each column 
    for t in xrange(len(seqList)): 
        for i, base in enumerate(seqList[t][start[t]:start[t]+k]): 
            dist[i][base] += 1.0 
    # Normalize (divide by total) 
    for i in xrange(k): 
        total = sum(dist[i].values()) 
        for base in "acgt": 
            dist[i][base] /= total 
    # return Distribution 
    return dist 

def Score(seq, si, k, dist): 
    prob = 1.0 
    for i, base in enumerate(seq[si:si+k]): 
        prob *= dist[i][base] 
    return prob 
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def RandomProfileMotifSearch(seqList, k): 
    start = [random.randint(0,len(seqList[t])-k+1) for t in xrange(len(seqList))] 
    bestScore = 0.0 
    while True: 
        distr = Profile(seqList, k, start) 
        score = 0.0 
        for t in xrange(len(seqList)): 
            score += Score(seqList[t], start[t], k, distr) 
        if (score <= bestScore): 
            break 
        bestScore = score 
        for t in xrange(len(seqList)): 
            newStart, newScore = -1, 0.0 
            for i in xrange(len(seqList[t])-k+1): 
                score = Score(seqList[t], i, k, distr) 
                if (score > newScore): 
                    newStart = i 
                    newScore = score 
            start[t] = newStart 
    return score, start 
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•  Since we choose starting positions randomly, there 
is little chance that our guess will be close to an 
optimal motif, meaning it will take a very long time 
to find the optimal motif. 

•  It is unlikely that the random starting positions will 
lead us to the correct solution at all. 

•  In practice, this algorithm is run many times, O(n), 
with the hope that random starting positions will be 
close to the optimum solution simply by chance. 

•  Can we do better than a random guess and then 
following a greedy path? 


