4/25/16

Randomized Algorithms

Comp 555 Spring 2016




Randomized Algonthms

’ Randormzed algorlthms mcorporate random
rather than deterministic, decisions

* Commonly used in situations
where no exact and/or fast
algorithm is known

* Works for algorithms that behave well on typical
data, but poorly in special cases

* Main advantage is that no input can reliably
produce worst-case results because the
algorithm runs differently each time.

4/25/16 Comp 555 Spring 2016 2



Select

. Select(L k) fmds the kth smallest element in L
* Select(L,1) find the smallest...
— Well known O(n) algorithm

minv = HUGE
for v in L:
if (v < minv):
minv = v

* Select(L, len(L)/2) find the median...
— How?
— median = sorted(L)[len(L)/2] - O(n logn)
* Can we find medians, or 1%t quartiles in O(n)?

4/25/16 Comp 555 Spring 2016 3



Select Recursion

. Select(L k) fmds the kth smallest element in L

— Select an element m from unsorted list L and
partition L the array into two smaller lists:

L, - elements smaller than m
and
- elements larger than m

e Iflen(L,) > k then
Select(L,,, k)
else if k > len(L,) + 1 then
Select(L,;, k - (len(L,,) + 1))
else m is the kth smallest element

4/25/16 Comp 555 Spring 2016 4



Example of Select(L 5)

leenanarray L={6, 3 2,8,4,5,1,7,0, 9}

Step 1: Choose the first element as m

L={6,328451709)

Our Selection

4/25/16 Comp 555 Spring 2016 5



Example of Select(L 5) contd)

Step 2 Spht the array 1nto L, and th

L,=1{3, 2 4, 5 1,

) ,3,/////
N/

th_{

4/25/16 Comp 555 Spring 2016 6



Example of Select(L 5) cont'd

Step 3: Recurs1ve1y call Select on either Llo or L,
until len(L, )+1 = k, then return m.

len(L,) >k =5 > Select({3, 2, 4, 5, 1, 0}, 5)
{2 1, 0} L,={4,5}
k=5>len(L,)+1 - Select({4, 5},5-3-1)

m=4
={empty}, L,={ 5 }
k =1 == len(L,)+1 > return 4

4/25/16 Comp 555 Spring 2016 7



detf

4/25/16

Select Code

select (L, k):
value = L[0]
Llo = [t for t in data if t < value]
Lhi = [t for t in data 1if t > value]
below = len(Llo) + 1
if (k < len(Llo)):

return select(Llo, k)
elif (k > below):

return select(Lhi, k - below)
else:

return value

Comp 555 Spring 2016



Select Wlth Good Sphts

. Runtlme depends on our select1on of m:

- A good selection will split L evenly such that

[ Lo | = | Ly |= |L]/2

- The recurrence relation is:

T(n) = T(n/2)

n+n/2+n/4+n/8+n/16+....=2n > O(n)

Same as search
\\\‘gfor minimum

4/25/16 Comp 555 Spring 2016 9



Select W1th Bad Sphts

However, a poor selectmn W111 spht L unevenly and in the
worst case, all elements will be greater or less than m so
that one Sublist is full and the other is empty.

For a poor selection, the recurrence relation is
T(n) = T(n-1)
In this case, the runtime is O(n?

). [ could have sorted
9 firet and done
better
Our dilemma:

O(n) or O(n?),
depending on the list... or O(n log 1) independent of it

4/25/16 Comp 555 Spring 2016 10



Select Analys1s cont'd)

Select seems rlsky compared to Sort

To improve Select, we need to choose m

to give good “splits’

It can be proven that to achieve O(n) running

time, we don’t need a perfect splits, just
reasonably good ones.

In fact, if both subarrays are at least of size n/4,
then running time will be O(n).

This implies that half of the choices of m make
good splitters.

4/25/16 Comp 555 Spring 2016 11



A Randormzed Approach

. To improve Select randomly select m.

Since half of the elements will be good splitters,
if we choose m at random we will get a 50%
chance that m will be a good choice.

* This approach will make sure that no matter
what input is received, the expected running
time is small.

4/25/16 Comp 555 Spring 2016 12



Randomlzed Select

def randomizedSelect(L, k):

value = random.choice(L)
Llo = [t for t in data 1if t < value]
Lhi = [t for t in data 1if t > value]
below = len(Llo) + 1
if (k < len(Llo)):

return randomizedSelect(Llo, k)
elif (k > below):

return randomizedSelect(Lhi, k-below)
else:

return value

4/25/16 Comp 555 Spring 2016 13



RandomlzedSelect Analys1s

e Worst case runtime: O(n?)
* Expected runtime: O(n).

* Expected runtime is a good measure of the
performance of randomized algorithms, often
more informative than worst case runtimes.

* Worst case runtimes are rarely repeated

* RandomizedSelect always returns the correct
answer, which offers a way to classify
Randomized Algorithms.

4/25/16 Comp 555 Spring 2016 14



Types of Randomized Algorlthms

. Las Vegas Algorlthms ~ always produce the
correct solution (i.e. randomizedSelect)

* Monte Carlo Algorithms - do not always return
the correct solution.

Of course, Las Vegas Algorithms are always
preferred, but they are often hard to come by.

4/25/16 Comp 555 Spring 2016 15



Recall the Motit Fmdmg Problem

Motlf Fmdmg Problem: leen a list of t sequences
each of length 7, find the “best” pattern of length k
that appears in each of the t sequences.

agtactggtgtacatttgathAtacgtacaccggcaacctgaaacaaacgctcagaaccagaagtgcI

t: 5< iaaacgtTAgtgcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt :

4/25/16 Comp 555 Spring 2016 16



A New Motit Finding Approach

. Motlf Fmdmg Problem G1ven a hst of ¢ length
n sequences, find the best near-matching pattern
of length k in each sequence.

* Previously: we have solved the Motif Finding
Problem using a Branch-and-Bound or a
Exhaustive techniques.

* Now: Randomly select possible locations and
find a way to change those locations in an
attempt to converge to the hidden motif.

4/25/16 Comp 555 Spring 2016 17



Profiles Revisited

. Let S = (51, st) be the startmg posmons for
k-mers in our t sequences.

* The substrings corresponding
to these starting positions L

. . 4 N
will form: s e g t a c T &
C c A t a c g t
. . a c g t T A g t {
C
- t x k alignment matrix 2 ¢ 9t e A
[ ] [ ] *
4 X k pr()flle matrtx A 0.6 0.0 0.2 0.00.60.20.20.0
cC 0.4 0.80.00.00.20.80.00.0 4
G 0.00.20.80.00.00.00.60.2
T 0.0 0.00.01.0 0.2 0.00.20.8
* Note that we now define the
profile matrix in terms of *x 8 ¢ 9 t & e g ¢
frequency, not counts as before.  p(x|profile)=0.6%0.8%0.8%1.0%0.6%0.8%0.6%0.8 = 0.0885

4/25/16 Comp 555 Spring 2016 18



Scormg Strmgs W1th a Proflle

* Letk-mer a=a,,a, a, ... q

* P(a|P)is defined as the probability that an
k-mer a was created by the Profile distribution P.

* If a is very similar to the consensus string of P
then P(a |P) will be high

* If ais very ditferent, then P(a | P) will be low.
k

Prob(a|P) =11 p(a,i)

1=1

4/25/16 Comp 555 Spring 2016 19



Scormg Strmgs Wlth a Proflle cont'd)

Given a profile: P =

A|1/2| 7/8 | 3/8| 0o |1/8| o0
cCl1/8 | 0 1/2 | 5/8 | 3/8| 0
T | 1/8 | 1/8 0 0 | 1/4| 7/8
G| 1/4 | 0 1/8 | 3/8 | 1/4 | 1/8

The probability of the consensus string:
Prob(aaacct|P) = 77?7

4/25/16 Comp 555 Spring 2016

20



Scormg Strmgs Wlth a Proflle cont'd)

Given a profile: P =

Al 12 | 78 | 38 0 | 1/8| 0
cCl1/8 | 0 1/2 | 58 | 38 | 0
T | 1/8 | 1/8 0 0 | 1/4| 7/8
G| 1/4 | 0 1/8 | 3/8 | 1/4 | 1/8

The probability of the consensus string:

Prob(aaacct|P) = 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 = .033646

4/25/16

Comp 555

Spring 2016

21



Scormg Strmgs Wlth a Proflle cont'd)

Given a profile: P =

Al 12 | 7/8 | 38 0 | 18| 0
cCl1/8 | 0 1/2 | 58 [3/8] 0
T | 1/8 | 1/8 0 0 | 1/4| 7/8
G| 1/4 | 0 1/8 | 3/8 | 1/4 | 1/8

The probability of the consensus string:
Prob(aaacct|P) = 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 = .033646

Probability of a different string:
Prob(atacag|P) = 1/2 x 1/8 x 3/8 x 5/8 x 1/8 x 1/8 = .001602

4/25/16 Comp 555 Spring 2016 22



P Most Probable k—mer

* Define the P-most probable k-mer from a sequence as an
k-mer in that sequence which has the highest probability

of being created from the profile P.

Al 1/27/8 |38 1] 0 |1/8] 0
p - | Cl1/8] 0 1/2 | 5/8 | 3/8| 0
T | 1/8 | 1/8 0 0 |1/4 | 7/8
G| 1/4 | 0 1/8 | 3/8 | 1/4 | 1/8
Given a sequence = ctataaaccttacatc, find the A-mer

that best matches the given profile

4/25/16

Comp 555

Spring 2016




P Most Probable k—mer (cont’ d)

C
T | 1/8 | 1/8 0 0 | 1/4| 7/8
G| 1/4 | 0 1/8 | 3/8 | 1/4 | 1/8

Find the Prob(a|P) of every possible 6-mer:
Firsttry.lctataaaccttacatc

Second try: ctataaa‘ccttacatc

Thirdtry: cttataaaccttacatc

-Continue this process to evaluate every possible 6-mer

4/25/16 Comp 555 Spring 2016 24



P-Most Probable k-mer (cont d)

Compute prob(a|P) for every pOSS|bIe 6-mer:

String, Highlighted in Red Calculations prob(a | P)
ctataaaccttacat 1/8x1/8x3/8x0x1/8x0 0
ctataaaccttacat 1/2x7/8x0x0x1/8x0 0
ctataaaccttacat 1/2x1/8x3/8x0x1/8x0 0
ctataaaccttacat 1/8x7/8x3/8x0x3/8x0 0
ctataaaccttacat 1/2x7/8x3/8x5/8x3/8x7/8 0336
ctataaaccttacat 1/2x7/8x1/2x5/8x1/4x7/8 .0299
ctataaaccttacat 1/2x0x1/2x01/4x0 0
ctataaaccttacat 1/8x0x0x0x0x1/8x0 0
ctataaaccttacat 1/8x1/8x0x0x3/8x0 0
ctataaaccttacat 1/8x1/8x3/8x5/8x1/8x7/8 .0004

4/25/16 Comp 555 Spring 2016 25



P-Most Probable k—mer (cont’ d)

P-Most Probable 6-mer In the sequence IS aaacct:

String, Highlighted in Red Calculations Prob(a | P)
ctataaaccttacat 1/8x1/8x3/8x0x1/8x0 0
ctataaaccttacat 1/2x7/8x0x0x1/8x0 0
ctataaaccttacat 1/2x1/8x3/8x0x1/8x0 0
ctataaaccttacat 1/8x7/8x3/8x0x3/8x0 0

ctataaaccttacat 1/2x7/8 x 3/8 x 5/8 x 3/8 x 7/8 .0336
ctataaaccttacat 1/2x7/8x1/2x5/8x1/4x7/8 .0299
ctataaaccttacat 1/2x0x1/2x01/4x0 0
ctataaaccttacat 1/8x0x0x0x0x1/8x0 0
ctataaaccttacat 1/8x1/8x0x0x3/8x0 0
ctataaaccttacat 1/8x1/8x3/8x5/8x1/8x7/8 .0004

4/25/16 Comp 555 Spring 2016 26



P Most Probable k—mer (cont’ d)

aaacct is the P-most probable 6-mer in:

ctataaaccttacatc

because Prob(aaacct|P) = .0336 is greater
than the Prob(a|P) of any other 6-mer in the
sequence.

4/25/16 Comp 555 Spring 2016 27



Dealmg with Zeroes

* In our toy example prob(a | P)=0 in many cases.
In practice, there will be enough sequences so
that the number of elements in the profile with a
frequency of zero is small.

* To avoid many entries with prob(a | P)=0, there
exist techniques to equate zero to a very small
number so that one zero does not make the
entire probability of a string zero. Pseudo counts
(assigning a prior probability based on our best
guess).

4/25/16 Comp 555 Spring 2016 28



P-Most Probable k-mers in Many Sequences

. Fmd the P-most probable ctataaacgttacatc

k-mer in each of the “t atagcgattcgactg
sequences.
cagcccagaaccct
cggtataccttacatc
Al127/8 381 0 [1/8] 0
P cl1s| o |1/2|5/8|3/8] 0 tgcattcaatagctta
A A R e tatcctttccactcac
Gl1/4] o | 1/8 |3/8]|1/4] 1/8
ctccaaatcctttaca

ggtcatcctttatcct

4/25/16 Comp 555 Spring 2016 29



P-Most Probable k—mers in Many Sequences

~+ | |0Q | |09 | |

sV -+ | D -+ | D sV -+

&+ |+~ | =+ | 0O @) @) @) (0)e]

5/8

5/8

1N @} N |09 (@] N |09

(a)

O+ |~ |0Q |~ | =+ | &+~ |09

0

0

6/8

4/8

O

1/8

3/8

0

3/8

6/8

Ol1[OlI»Ple(N|lc|lalbx]|wNn] R

2/8

0

2/8

1/8

2/8

4/25/16

Comp 555

ctataaacgttacatc

atagcgattcgactg
cagcccagaaccct
cggtgaaccttacatc
tgcattcaatagctta
tgtcctgtccactcac
ctccaaatcctttaca

ggtctacctttatcct

P-Most Probable k-mers give a new profile

Spring 2016



Comparmg New and Old Profﬂes

1 a a a C g t
2 a t a g C g
3 a a C C C t
4 g a a C C t
5 a t a g C t
6 g a C C t g
7 a t C C t t
8 t a C C t t
A 5/8 5/8 4/8 0 0 0
C 0 0 4/8 6/8 4/8 0
T 1/8 3/8 0 0 3/8 6/8
G 2/8 0 0 2/8 1/8 2/8

Al 12| 78 | 38 o | 18| o
cl|l 8| o 12 | 58 | 38| 0
T| 1718 | 1/8 0 0 | 174 | 78
G| 14| o 18 | 38 | 174 | 118

Red - frequency increased, Blue — frequency decreased

4/25/16

Comp 555

Spring 2016

31




Random Profﬂe Mot1f Search

Use P-Most probable k-mers to adjust start positions until
we reach a “best” profile; this is the motitf.

1) Select random starting positions.

3) Create a profile P from the substrings at these starting
positions.

4) Find the P-most probable k-mer a in each sequence and
change the starting position to the starting position of a.

5) Compute a new profile based on the new starting
positions after each iteration and proceed until we
cannot increase the score anymore.

6) Repeat the entire process (Steps 1-5) a few times and
keep the best answer.

4/25/16 Comp 555 Spring 2016 32



RandomProfﬂeMotlfSearch Algorlthm

def Proﬁle(sequst, K, start):
dist = [dict([(base,0.1) for base in "acgt"]) for i in xrange(k)]
# Count base occurrences in each column
for t in xrange(len(seqList)):
for i, base in enumerate(seqList[t][start[t]:start[t] +k]):
dist[i][base] += 1.0
# Normalize (divide by total)
for i in xrange(k):
total = sum(dist[i].values())
for base in "acgt"
dist[i][base] /= total
# return Distribution
return dist

def Score(seq, si, k, dist):
prob = 1.0
for i, base in enumerate(seq[si:si+k]):
prob *= dist[i][base]
return prob

4/25/16 Comp 555 Spring 2016 33



RandomProfﬂeMotlfSearch Algorlthm

def RandomProflleMotlfSearch(seqLlst, K):
start = [random.randint(0,len(seqList[t])-k+1) for t in xrange(len(seqList))]
bestScore = 0.0
while True:
distr = Profile(seqList, k, start)
score = 0.0
for t in xrange(len(seqList)):
score += Score(seqList[t], start[t], k, distr)
if (score <= bestScore):
break
bestScore = score
for t in xrange(len(seqList)):
newStart, newScore = -1, 0.0
for i in xrange(len(seqList[t])-k+1):
score = Score(seqList[t], i, k, distr)
if (score > newScore):
newStart = |
newScore = score
start[t] = newStart
return score, start

4/25/16 Comp 555 Spring 2016 34



Example

def FindMotif(seqgList, k, N):
highScore = 0.0
for i in xrange(N):
score, start = RandomProfileMotifSearch(seqList, k)
if score > highScore:
motif = [s for s in start]
highScore = score
return highScore, motif

$timeit s, m = FindMotif(segApprox, 10, 100)
print s
for i, si in enumerate(m):

print si, segApprox[i][si:si+l0]

1 loops, best of 3: 457 ms per loop
0.297843115489
17 tagatctgaa
47 tggatccgaa
18 tagacccgaa
33 taaatccgaa
21 taggtccaaa
0 tagattcgaa
46 cagatccgaa
70 tagatccgta
16 tagatccaaa
65 tcgatccgaa

4/25/16 Comp 555 Spring 2016 35



RandomProf11eMot1fSearch Analy51s

. Smce we

choose startmg posmons randomly, there

is little chance that our guess will be close to an
optimal motif, meaning it will take a very long time
to find the optimal motif.

* Itis unlikely that the random starting positions will
lead us to the correct solution at all.

* In practice, this algorithm is run many times, O(n),

with the
close to t

hope that random starting positions will be

he optimum solution simply by chance.

e Canwed

o better than a random guess and then

following a greedy path?

4/25/16

Comp 555 Spring 2016 36



