Lecture 24:
Hidden Markov Models
(Continued)

Not in book
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HMMs in B1ology

* Inferring ancestral contr1but1ons to a descendant
* Collaborative Cross project

* Maintained at UNC since 2006

* Objective:

— Create new reproducible
mouse strains by randomly
combining the genomes of
eight diverse mice strains

e Problem:

— Given an extant strain,
which parts of its genome

came from which founder
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M1x1ng Genomes

. A randormzed breedmg scheme was used to

— Mix the genomes by recombination

— Fix the genomes
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A Genome Mosalc

o A Hldden Markov Model is used
to infer the “hidden” state of Mosaic after 7 generations
which of the 8 founders
contributed to which parts of
the genome

e A Viterbi Solution finds ms csmus
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Genotypmg Mlcroarrays

. DNA probes to query the state of spec1f1c
“known” and “informative”
Single Nucleotide Polymorphisms SNPs

* Each probe distinguishes 4 cases
(IIWII’IImII, IIHII, IINII)
e From these observations we infer the
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Example Genotypes

° Genotypes fOI' a Proble info  Founder (i-enotypes Target

: X X

chromosome 5 _ °

: s 3 $E=z_ &

* 8112 probes with I 0§ 95888z
. : S 8 Zg3ERE3Eg
pOS]‘tlon Of Varla‘nt 2 3176721 G T G T G G T T T

. . 2 3180256 G G G G G A A G G

e Alleles are indicated 2| ste2308la G 1A [GAIGIG A I
. 2 3233750 G G G G G A G G G

by the nucleotlde 2 3350920A A A A A G G A A

2 3353380 T T C T C C C C C

. 2 3362696 |T (T |T |T (T |T [C [T |T

* Rarely can a single maker 2 3ewnccrcrirrecc
2 3433708 G G G G G A A G G

resolve the founder S seseislc e el [c T lc fe I

2 3503822 T T T T C T C T T

e Which strain would S et T e T e e e T It
2 3613854 A A A A G G G A A

you guess for the S 3eeso041C 6 16 6 (6 6 [T T T

2 3681891 G G G G G A G G G

2 3715097 G G G G G T T G G

beginning?
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. One last issue, between 1% and 5% of genotypes
are simply wrong

e Technical errors

— A probe didn't glow bright enough

— A section of the array was damaged
(fingerprints, cracks, hair, etc.)

— Messed up fabricating a probe’s sequence
— DNA was contaminated

* Error types:
— Unexpected calls (observation is uninformative)
— A possible, but incorrect call
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Read Genotypes

fp = open("genotypes.csv", ‘rU')

data = fp.read().split('\n") # break file into lines

fp.close()

header = data.pop(@).split(',") # First line is header

while (len(datal[-1].strip()) < 1): # remove extra lines
data.pop()

for i, line in enumerate(data): # make a list from each row
field = line.split(',")
field[1] = int(field[1]) # convert position to integer
datal[i] = field

fp.close()

print ”"Number of probes”, len(data)

Number of Probes: 8112

data[l000] = ['2', 25896880, ‘'T', 'C', ‘'C', ‘'C', 'T', 'C', 'T", 'T', 'T']
data[le001] = ['2', 25914367, 'A', 'G', 'G', 'G', 'G', 'G', 'G', 'G', 'G']
datalle002] = ['2', 25936735, 'T', 'T', 'T', 'T', 'C', 'Cc', 'T', 'T', 'T']
data[1l@003] = ['2', 25940660, 'G', 'A', 'A', 'A', 'G', 'G', 'G', 'G', 'G']
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Viterbi Dynamic Program

from math import loglo@

Nstates 8
prevpos 1
state = [[(float(len(data)),i) for i in xrange(Nstates)]] # (log(p), PathToHere)
for i in xrange(len(data)):
# Count expected genotypes
count = dict([(call, datalil [2:2+Nstates].count(call)) for call in "ACGTHN"1)
# Get the target genotype at this probe
observed = datali] [-1]
# Compute emission probability, assuming 5% error rate
if (count[observed] == 0):
emission = [1.0/Nstates for j in xrange(2,2+Nstates)] # unexpected
else:
emission = [0.95/countldatalil [j]1] if datalil[j] == observed else 0.05/count[datalil [j]]
for j in xrange(2,2+Nstates)]
# compute transition probability
position = datal[i] [1]
delta = position — prevpos
prevpos = position
stay = ((Nstates - 1.0)xmath.exp(-delta/1000000.0) + 1.0)/Nstates
switch = (1.0 - stay)/(Nstates - 1.0)
# update state probailities for all paths leading to the ith state
path = []
for j in xrange(Nstates):
choices = [(logl@(emission[j])+(logl@(stay) if (k==j) else logl@(switch))+state[-1][k][@],k)
for k in xrange(Nstates)]
path.append(max(choices))
state.append(path)
print "Length of paths:", len(state)
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Transition Probablllty

Recombma’uon hkehhood is modeled using an
exponential distribution

Recombinations between nearby probes are
unlikely X

* Distant probes
can be from
other founders
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Probe Spacmg in Megabases
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Backtrackmg

# backtrack

path = state[-1]
maxi = @
maxp = path[0][0]

for i in xrange(1,Nstates):
if (path[i] [@] > maxp):
maxp = path[i] [0]
maxi = 1
print maxi, path[maxi], header[2+maxi]

for j in xrange(len(state)-2,-1,-1):
datalj]l.append(header[2+maxil)
maxi = statel[j+1] [maxil] [1]

header.append("Founder")

5 (2686.5234854121827, 5) CAST/Eil]

fp = open("result.csv", 'w')
fp.write(','.join(header)+'\n")
for row in data:

fp.write(','.join([str(v) for v in row])+'\n")
fp.close()
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e The mferred Mosaic

* Repeat for every
chromosome

* Most likely, but
how likely?

* Other approaches

4/20/16 Comp 555

awosowoJlyd
NN NN NN NN NNNN NNNNN 4

NNNN

uoiysod

3
3176721 G
3180256 G
3182308 A
3183784 T
3233750 G

6666 -9M49/8D

0 = > 6060 [WIAS/TS6ZT
0 O 66 - 1ys/aoN
6 = > 660 (TH/0ZN

OOHA> ... D000 === OO>0 """ >6060>0 13/1SVD

132621710
132624885
132655807
132658252

>4
>4
oraeH

161893676
161895302
161922951
161938620

o-H-4>
> 0>
o-H-4H0

172257444 C
172287540 C
172321479 G
172352159 C

->00
[eNONeNe]

180938391 G
180965832 T
181009379 T
181011845 C

044 e
o400

Spring 2016

>-=0> >0 -

->00

o400

>00 [blellelds >0 -

N4 o

oleNelP

0O 6 6 > = ryd/Mmd

O > 6 - 03/gsm
6 = > 6 - 99ZWeETEY0

>-0> -0 >0

oo -0

00>

=>4 0 Q-0 > 0Or»>-

N

>00>» =1 > > -

060 ->

elleNelP

Japuno4

WSB/EiJ
WSB/EiJ
WSB/EiJ
WSB/EiJ
WSB/EiJ

WSB/EiJ
WSB/EiJ
NZO/H1Lt]
NZO/H1Lt]

NZO/H1Lt]
NZO/H1Lt]
CAST/EiJ
CAST/EiJ

CAST/EiJ
CAST/EiJ
PWK/PhJ
PWK/PhJ

PWK/PhJ
PWK/PhJ
CAST/Ei]
CAST/Ei]

12



Forward Backward Problem

a sequence of coin -

tosses generated by an HMM. Q .l Q

Ty

N
1
.
7=\

find the most probable coin that the house
was using at a particular flip.
P(x,j'[i = k) Probabilities of all paths in state k at i

P(, =k|r) =
P(X) Probability of sequence over all paths
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Illustratmg the d1fference

Not a lot X = THHH
worse than
the best : F F F F

solution z’, BFFF

Veterbi solution, the
most likely sequence FBBB

states. - BBRBB

4/20/16

.0228)
.0013)
.0004)
.0019)
.0004)
.0000)
.00006)
.0028)
.0038)
.0002)
.0001)
.0003)
.0057)
.0003)
.0085)
.0384)
.0877

High probability

\\Ogou‘rpuf (>0.0625)
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x = THHH
FFFF
FFBF
FFFB
FFBB
BFFF
BFBF
BFFB
BFBB

P

.0228)
.0004)
.0038)
.0057)
.0013)
.0000)
.0002)
(@.

0003)

P(m,=FIx) = 0.0345/0.0877 =

FBFF
FBBF
FBFB
FBBB
BBFF
BBBF
BBFB
BBBB

(0.
(0.
(0.
(0.
(0.
(0.
(0.
(0.

0004)
0006)
0001)
0085)
0019)
0028)
0003)
0384)

0.39306

The forward-backward
algorithm tells us how
likely we were using

the biased coin at the

%ﬁ second flip.

P(m,=BIx) = 0.0532/0.0877 =

Spring 2016
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Forward Algorlthm

. Defmed ﬁ” (forward probabzlzty) as the
probability of emitting the prefix x,...x; and
reaching the state = = «.

* The recurrence for the forward algorithm is:

,l o ek(xl) ﬁ,i—] A

lk
Probability of "f'”°b°t?]f'.”y. of )
H . . ransi lonlng 0
‘ emitting x; at i \‘ from state at i-1
to state at i
 Same as Viterbi

except stop atk
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Backward Algonthm

. However forward probabzlzty is not the only
factor affecting P(w; = k|x).

* The sequence of transitions and emissions that
the HMM undergoes between z; and x,_; also

affect P(w; = k|x).
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Backward Algorithm (cont'd)

. Backward probabzlzty b,; = the probab1l1ty of bemg
in state z; = k and emitting the suffix x,,,...x

n.

* The backward algorithm’s recurrence:

bk,i =2 e Xy ) bl,i+1 Ay

1€9Q

This is the same as computing the
probability of a specific path or
suffix in this case except the
initial probability is not %.
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Backward Forward Algor1thm

. The probablhty that the dealer used a biased
coin at any moment i is as follows:

Pa =k fifi). bl)
Pe) PR

P(r. = k|x) =

* So, to find P(x; = k|x) for all I, we solve two
dynamic programs

— One from beginning to end
— One from the end to the beginning
— Combine the corresponding states
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HMM Parameter Est1mat1on

So far we have assumed that the trans1t1on and
emission probabilities are known.

* However, in most HMM applications, the
probabilities are not known. It’s very hard to
estimate the probabilities.

e Parameter estimation is much harder than state
estimation
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HMM Parameter Estimation (cont’d)

. Let ©) be a vector containing all of the unknown
transition and emission probabilities.

Given training sequences x/,...,x™, let P(x | ©)
be the max. prob. of x given the assignment of
param.’s O.

* Then our goal is to find

maxg I1 P(x,|0)
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A Parameter Est1mat10n Approach

. If hldden states were known, we could use our trammg data
to estimate parameters

Ay b) =
a, = e, (D) EEk(O)

E Akq
o),

* In all likelihood we Wouldn’t be given the hidden state
sequence, 7T, but only the observed output stream, x

E (D)

* An alternative is to make an intelligent guess of 7, use the
equations above to estimate parameters, then run Viterbi to
estimate the hidden state, then reestimate the parameters and
repeat until the state assighments or parameter values
converge.

* Such iterative approaches are called Expectation
Maximization (EM) methods of parameter estimation
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Protile Ahgnment usmg HMMs

. Dlstant spee1es of functlonally related sequences
may have weak pairwise similarities with
known species, and thus fail individual pairwise
significance tests.

* However, they may have weak similarities with
many known species.

* The goal is to consider sequences at once.
(Multiple alighment)

* Related sequences are often better represented
by a consensus profile that any multiple
alignment.
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Profﬂe Representatlons

Aligned DNA sequences can be represented by a
4 - n profile matrix reflecting the frequencies
of nucleotides in every aligned position.

A|.72 14 0 0 .72 .72 0 0
T | .14 .72 0 0 0 .14 .14 .86
G|.14 .14 86 .44 0 .14 0 0
C

0 0 .14 56 .28 0 .86 .14

Protein families can be represented by a 20 - n
profile representing frequencies of amino acids.
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HMM Ahgnment

. One method of performmg sequence
comparisons to a profile is to use a HMM

* Emission probabilities, ¢,(a), from the profile

* Transition probabilities from our match
-mismatch matrix O ;

* Or we can explicitly represent the insertion and
deletion states
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Profile HMM

WP WCAP WO WEAWWCPWOOUWCAPWOOWA WO W AP WAdPWaDPUW P4

NI '/‘W{b’/{‘
LA

Recall this is a model of a process,
Mi/ Match States @ not agraph of asolution
approach. However , every
Di/ Delete States alignment is a path in this graph.
I, Insertion States
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States of Proflle HMM

* Match states M;...M,, (plus begin/end states)
* Insertion states I,/;...1,

* Deletion states D,...D,

* Assumption:

eri(a) = p(a)
where p(a) is the frequency of the occurrence of the
symbol a in all the sequences.
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Trans1t10n Probab111t1es in Profﬂe HMM

* log(ayy)tlog(ap,) = gap initiation penalty

* log(a;) = gap extension penalty
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Proflle HMM Allgnment

. Defme vM (1 ) as the logarlthmlc hkehhood score
of the best path for matching x;..x; to profile
HMM ending with x; emitted by the state M.

. vI]-(i) and UD]-(i) are defined similarly.
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Protile HMM Ahgnment Dynamic Programmmg

’(JMj_l(i-l) + lOg(aM]'_LM]‘)
oM(i) = log (emi(x)/p(x) + max = v';(i-1) + log(ar; 1,m;)
UD]'_I (1'1) + lOg(aD]_llM])

vM(i-1) + log(am; )
vlj(i) = log (er(x;)/p(x;) + max vlj(i-l) + log(a;, 1)
vP(i-1) + log(ap, 1))
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Paths in Edlt Graph and Profﬂe HMM

A path through an edit graph and the corresponding
path through a profile HMM
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