

Lecture 23: Hidden Markov Models

Not in book

Dinucleotide Frequency

- Consider all 2-mers in a sequence {AA,AC,AG,AT,CA,CC,CG,CT,GA,GC,GG,GT,TA,TC,TG,TT}
- Given 4 nucleotides:
 each with probability of occurrence is ~ ½.
 Thus, one would expect that the probability of occurrence of any given dinucleotide is ~ 1/16.
- However, the frequencies of dinucleotides in DNA sequences vary widely.
- In particular, CG is typically underepresented (frequency of CG is typically < 1/16)

Example

From a 291829 base sequence

AA	0.120214646984	GA	0.056108392614
AC	0.055409350713	GC	0.037792809463
AG	0.068848773935	GG	0.043357731266
AT	0.083425853585	GT	0.046828954041
CA	0.074369148950	TA	0.077206436668
CC	0.044927148868	TC	0.056207766218
CG	0.008179475581	TG	0.063698479926
СТ	0.066857875186	TT	0.096567155996

- Expected value 0.0625
- CG is 7 times smaller than expected

Why so few CGs?

- CG is the least frequent dinucleotide because C in CG is easily methylated. And, methylated Cs are easily mutated into Ts.
- However, methylation is suppressed around genes and transcription factor regions
- So, CG appears at relatively higher frequency in these important areas
- These localized areas of higher CG frequency are called *CG-islands*
- Finding the CG islands within a genome is among the most reliable gene finding approaches

CG Island Analogy

- The CG islands problem can be modeled by a toy problem named "The Fair Bet Casino"
- The outcome of the game is determined by coin flips with two possible outcomes: Heads or Tails

However, there are two different coins

- A Fair coin: Heads and Tails with same probability ½.
- The Biased coin:
 Heads with prob. ³/₄,
 Tails with prob. ¹/₄.

The "Fair Bet Casino" (cont'd)

- Thus, we define the probabilities:
 - $-P(H | Fair) = P(T | Fair) = \frac{1}{2}$
 - $-P(H | Bias) = \frac{3}{4}, P(T | Bias) = \frac{1}{4}$
 - The house doesn't want to get caught switching between coins, so they do so infrequently
 - Changes between Fair and Biased coins with probability 10%

The Fair Bet Casino Problem

• **Input:** A sequence $x = x_1x_2x_3...x_n$ of *observed* coin tosses made by some combination of the two possible coins (F or B).

• Output: A sequence $\pi = \pi_1 \pi_2 \pi_3 ... \pi_n$, with each π_i being either F or B indicating that x_i is the result of tossing the Fair or Biased coin respectively.

Problem...

Fair Bet Casino Problem

Any observed outcome of coin tosses *could* have been generated by *either* coin, or any combination.

But, all coin exchange combinations are not equally likely. What coin exchange combination has the highest probability of generating the observed series of tosses?

Decoding Problem

P(x | fair coin) vs. P(x | biased coin)

- Suppose first, that the dealer never exchanges coins.
- Some definitions:
 - P(x | Fair): prob. of the dealer generating the outcome x using the Fair coin.
 - P(x | Biased): prob. of the dealer generating outcome x using the Biased coin .

P(x | fair coin) vs. P(x | biased coin)

)

•
$$P(x | Fair) = P(x_1...x_n | Fair) =$$

$$\Pi_{i=1,n} p(x_i | Fair) = (1/2)^n$$

•
$$P(x | Biased) = P(x_1...x_n | Biased coin) =$$

 $\Pi_{i=1,n} p(x_i | Biased) = (3/4)^k (1/4)^{n-k} = 3^k/4^n$

– Where *k* is the number of *H*eads in *x*.

P(x | fair coin) vs. P(x | biased coin)

 When is a sequence equally likely to have come from the Fair or Biased coin?

$$P(x | Fair) = P(x | Biased)$$

$$1/2^{n} = 3^{k}/4^{n}$$

$$2^{n} = 3^{k}$$

$$n = k \log_{2} 3$$

- when $k = n / log_2 3$ $(k \sim 0.63 n)$
- So when the number of heads is greater than 63% the dealer most likely used the biased coin

Log-odds Ratio

We can define the *log-odds ratio* as follows:

$$\log_2(P(x | Fair) / P(x | Biased)) =$$

$$= \sum_{i=1}^{k} \log_2(p(x_i | Fair) / p(x_i | Biased))$$

$$= n - k \log_2 3$$

- The log-odds ratio is a means (threshold) for deciding which of two alternative hypotheses is most likely
- "Zero-crossing" measure; if the log-odds ratio > 0 then the numerator is more likely, if it is < 0 then the denominator is more likely, they are equally likely if the log-odds ratio = 0

Computing Log-odds Ratio in Sliding Windows

$$x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 \dots x_n$$

Consider a *sliding window* of the outcome sequence. Find the log-odds for this short window.

Disadvantages:

- the length of CG-island (appropriate window size) is not known in advance
- different window sizes may classify the same position differently

Key Elements of this Problem

- There is an unknown, *hidden*, state for each observation (Was the coin the Fair or Biased?)
- Outcomes are modeled probabilistically:
 - $-P(H | Fair) = P(T | Fair) = \frac{1}{2}$
 - $-P(H | Bias) = \frac{3}{4}, P(T | Bias) = \frac{1}{4}$
- Transitions between states are modeled probabilistically:
 - P(π_i = Biased | π_{i-1} = Biased) = a_{BB} = 0.9
 - P(π_i = Biased | π_{i-1} = Fair) = a_{FB} = 0.1
 - $P(\pi_i = Fair \mid \pi_{i-1} = Biased) = a_{BF} = 0.1$
 - $P(\pi_i = Fair \mid \pi_{i-1} = Fair) = a_{FF} = 0.9$

Hidden Markov Model (HMM)

- A generalization of this class of problem
- Can be viewed as an abstract machine with k hidden states that emits symbols from an alphabet Σ .
- Each state has its own probability distribution, and the machine switches between states according to this probability distribution.
- While in a certain state, the machine makes 2 decisions:
 - What state should I move to next?
 - What symbol from the alphabet Σ should I emit?

Why "Hidden"?

- Observers can see the emitted symbols of an HMM but have *no ability to know which state the HMM is currently in*.
- Thus, the goal is to infer the *most likely hidden* states of an HMM based on the given sequence of emitted symbols.

HMM Parameters

page de la compage de la compa

 Σ : set of emission characters.

Ex.:
$$\Sigma = \{0, 1\}$$
 for coin tossing
(0 for *T*ails and 1 *H*eads)
 $\Sigma = \{1, 2, 3, 4, 5, 6\}$ for dice tossing

Q: set of hidden states, emitting symbols from Σ . Q = {F,B} for coin tossing

HMM Parameters (cont'd)

A = (a_{kl}) : a $|Q| \times |Q|$ matrix of probability of changing from state k to state l. *Transition matrix*

$$a_{FF} = 0.9$$
 $a_{FB} = 0.1$

$$a_{BF} = 0.1$$
 $a_{BB} = 0.9$

 $\mathbf{E} = (\mathbf{e}_k(b))$: a $|\mathbf{Q}| \times |\mathbf{\Sigma}|$ matrix of probability of emitting symbol b while being in state k. *Emission matrix*

$$e_F(T) = \frac{1}{2}$$
 $e_F(H) = \frac{1}{2}$

$$e_B(T) = \frac{1}{4}$$
 $e_B(H) = \frac{3}{4}$

HMM for Fair Bet Casino

• The Fair Bet Casino in HMM terms:

$$\Sigma = \{0, 1\}$$
 (0 for Tails and 1 Heads)

$$Q = \{F,B\}$$
 – F for Fair & B for Biased coin.

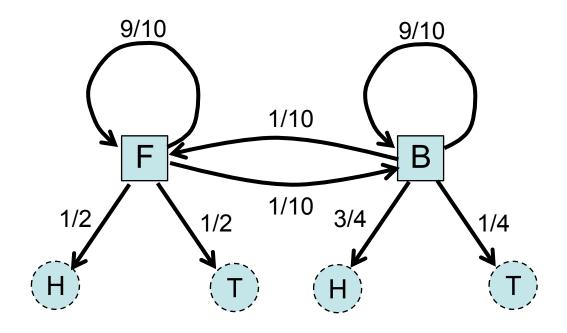
• Transition Probabilities *A*, Emission Probabilities *E*

A	Fair	Biased
Fair	0.9	0.1
Biased	0.1	0.9

E	Tails(0)	Heads(1)
Fair	1/2	1/2
Biased	1/4	3/4

HMM for Fair Bet Casino (cont'd)

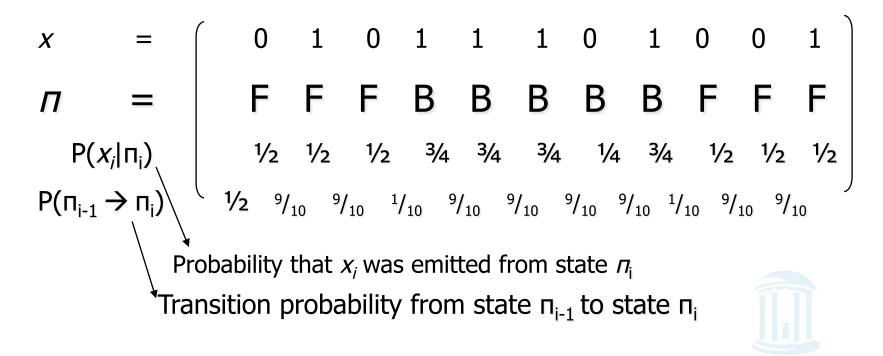
POPODO POP



HMM model for the Fair Bet Casino Problem

Hidden Paths

- - A *path* $\pi = \pi_1 ... \pi_n$ in the HMM is defined as a sequence of hidden states.
 - Consider path π = FFFBBBBBFFF and sequence x = 01011101001



$P(x \mid \pi)$ Calculation

• $P(x \mid \pi)$: Probability that sequence x was generated by the path π :

$$P(x \mid \pi) = P(\pi_0 \rightarrow \pi_1) \cdot \prod_{i=1}^n P(x_i \mid \pi_i) \cdot P(\pi_i \rightarrow \pi_{i+1})$$
$$= a_{\pi_0, \pi_1} \cdot \prod_{i=1}^n e_{\pi_i} (x_i) \cdot a_{\pi_i, \pi_{i+1}}$$

Decoding Problem

- Goal: Find an optimal hidden path of state transitions given a set of observations.
- **Input:** Sequence of observations $x = x_1...x_n$ generated by an HMM $M(\Sigma, Q, A, E)$
- Output: A path that maximizes $P(x \mid \pi)$ over all possible paths π .

How do we solve this?

Brute Force

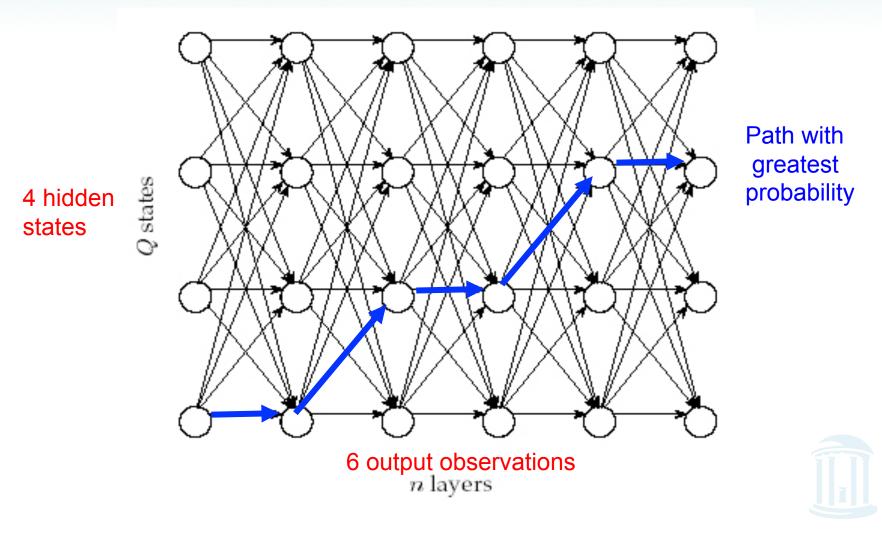
- Approach:
 - Enumerate every possible path
 - Compute $P(x_{1..n} | \pi_{1..n})$ for each one
 - Keep track of the most probable path
- How many possible paths are there for *n* observations?
- Is there a better approach?
 - Break the paths in two parts, $P(x_{1..i} | \pi_{1..i})$, $P(x_{i..n} | \pi_{i..n})$
 - $P(x_{1..n} \mid \pi_{1..n}) = P(x_{1..i} \mid \pi_{1..i}) \times P(x_{i..n} \mid \pi_{i..n})$
 - Will less than the highest $P(x_{1..i} | \pi_{1..i})$ ever improve the total probability?
 - Thus to find the maximum $P(x_{1..n} | \pi_{1..n})$ we need find the maximum of each subproblem $P(x_{1..i} | \pi_{1..i})$, for i from 1 to n
 - What algorithm design approach des this remind us of?

Building Manhattan for Decoding

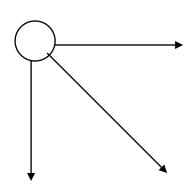
- Andrew Viterbi developed a "Manhattan-like grid" (Dynamic programming) model to solve the *Decoding Problem*.
- Every choice of $\pi = \pi_1 \dots \pi_n$ corresponds to a path in the graph.
- The only valid direction in the graph is *eastward*.
- This graph has $|Q|^2(n-1)$ edges.

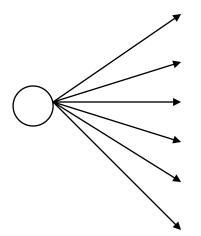
Edit Graph for Decoding Problem

PROPROPORTO POR PROPROPORTO PORTO PORTO



Decoding Problem vs. Alignment Problem



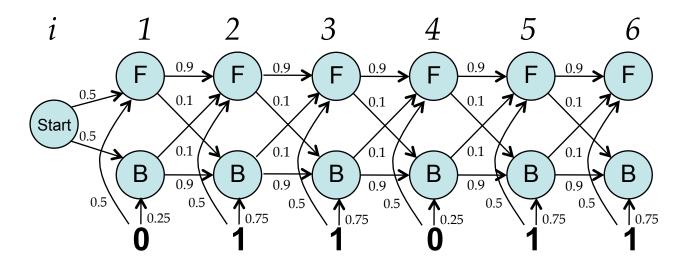


Valid directions in the *alignment problem*.

Valid directions in the decoding problem.

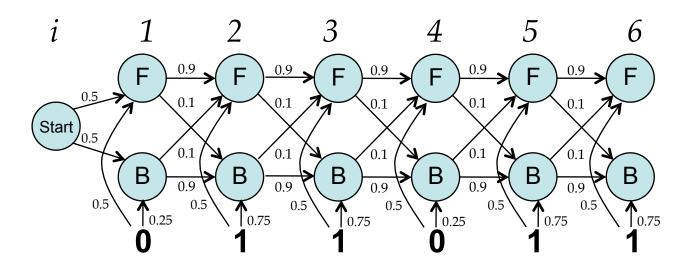
Viterbi Decoding of Fair-Bet Casino

- Each vertex represents a possible state at a given position in the output sequence
- The observed sequence conditions the likelihood of each state
- Dynamic programming reduces search space to:
 |Q|+transition_edges×(n-1) = 2+4×5 from naïve 2⁶



Decoding Problem

• The *Decoding Problem* is equivalent to finding a longest path in the *directed acyclic graph (DAG)*, where "longest" is defined as the product of the probabilities along the path.



Viterbi Decoding Algorithm

- Since the *longest path* is the *product* of edges' weights, if we use the log of the weights we can make it a sum again!
- The value of the product can become extremely small, which leads to underflow.
- Logs avoid underflow (precision loss due to adding numbers of vastly different magnitudes)

$$s_{k,i+1} = \log e_l(x_{i+1}) + \max_{k \in Q} \{s_{k,i} + \log(a_{kl})\}$$

Viterbi Decoding Problem (cont'd)

- Every path in the graph has the probability $P(x \mid \pi)$.
- The Viterbi decoding algorithm finds the path that maximizes $P(x \mid \pi)$ among all possible paths.
- The Viterbi decoding algorithm runs in $O(n | Q|^2)$ time (length of sequence times number of states squared).
- The Viterbi decoding algorithm can be efficiently implemented as a *dynamic program*

Dynamic Program's Recursion

 \mathcal{A}

$$\mathbf{S}_{l,i+1} = \max_{k \in \mathcal{Q}} \{ s_{k,i} \cdot \text{weight of edge between } (k,i) \text{ and } (l,i+1) \}$$

$$= \max_{k \in \mathcal{Q}} \{ s_{k,i} \cdot a_{kl} \cdot e_l (x_{i+1}) \}$$

$$= e_l (x_{i+1}) \cdot \max_{k \in \mathcal{Q}} \{ s_{k,i} \cdot a_{kl} \}$$

Decoding Problem (cont'd)

• Initialization:

$$-a_{start.k} = 1/|Q|$$

$$-s_{k,0} = 0$$
 for $k \neq begin$.

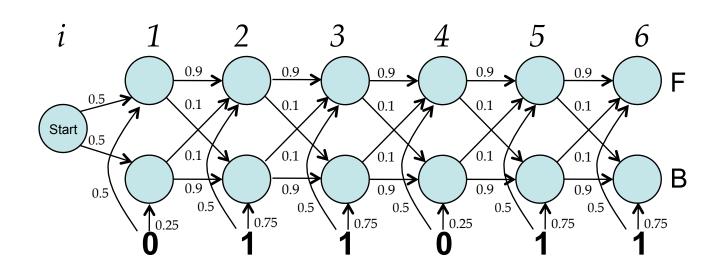
• Let π^* be the optimal path. Then,

$$P(x \mid \pi^*) = \max_{k \in Q} \{s_{k,n} \cdot a_{k,end}\}$$

33

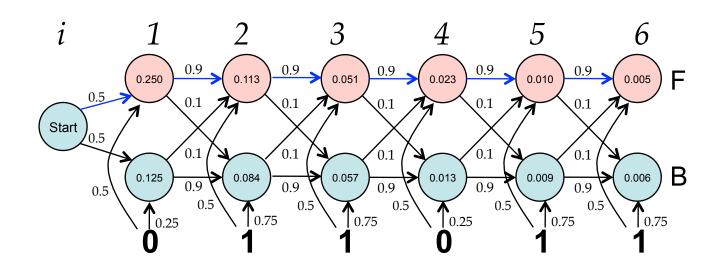
Viterbi Example

- Solves all subproblems implied by emitted subsequence
- How likely is the best path?
- What is it?



Viterbi Example

- Solves all subproblems implied by emitted subsequence
- How likely is the best path? 0.006
- What is it? BBBBBB



How likely is most likely?

- - The "most likely path" may not be a lot more likely than a 2nd or 3rd most likely paths (more so in more realistic cases than this one).
 - Actual probability of the "most likely path" is not that high.
 - Are there better questions we could ask?

0.0058	BBBBBB	0.0001	BBBFFB	0.0000	FFFBFF	0.0000	FBBFBF	
0.0046	FFFFFF	0.0001	FFFFBF	0.0000	FFBFBB	0.0000	BFBBFF	
0.0013	FBBBBB	0.0001	FFBFFF	0.0000	FBFFBB	0.0000	BFFBBF	
0.0012	FFFFBB	0.0001	FBFFFF	0.0000	FBBFFB	0.0000	BBFBFF	
0.0009	FFBBBB	0.0001	FFBBBF	0.0000	FFBFFB	0.0000	FFBFBF	
0.0008	FFFFFB	0.0001	BFFFBB	0.0000	FBFFFB	0.0000	FBFFBF	
0.0006	FFFBBB	0.0001	FBBBFF	0.0000	FBFBBB	0.0000	BFFBFF	
0.0006	BBBFFF	0.0001	BBFFFB	0.0000	FBBBFB	0.0000	BFBFBB	
0.0004	BBBBBF	0.0000	BFBBBB	0.0000	BBBFBF	0.0000	FBFBBF	
0.0004	BBFFFF	0.0000	BBBBFB	0.0000	FFBBFB	0.0000	BFBFFB	
0.0003	BBBBFF	0.0000	BBFBBB	0.0000	BBFFBF	0.0000	FBFBFF	
0.0003	BFFFFF	0.0000	BFFFFB	0.0000	BFFFBF	0.0000	BFBBFB	
0.0001	BBBFBB	0.0000	FFFBBF	0.0000	BFBFFF	0.0000	BBFBFB	
0.0001	FBBFFF	0.0000	FFBBFF	0.0000	FFFBFB	0.0000	BFFBFB	
0.0001	FBBBBF	0.0000	FBBFBB	0.0000	BFBBBF	0.0000	FBFBFB	
0.0001	BBFFBB	0.0000	BFFBBB	0.0000	BBFBBF	0.0000	BFBFBF	

More Focused Question

- - Are there common aspects of the most likely solutions?
 - Which coin was I most likely using on the 4th roll

0.0058	BBBBBB	0.0001	BBBFFB	0.0000	FFFBFF	0.0000	FBBFBF	
0.0046	FFFFFF	0.0001	FFFFBF	0.0000	FFBFBB	0.0000	BFBBFF	
0.0013	FBBBBB	0.0001	FFBFFF	0.0000	FBFFBB	0.0000	BFFBBF	
0.0012	FFFFBB	0.0001	FBFFFF	0.0000	FBBFFB	0.0000	BBFBFF	
0.0009	FFBBBB	0.0001	FFBBBF	0.0000	FFBFFB	0.0000	FFBFBF	
0.0008	FFFFFB	0.0001	BFFFBB	0.0000	FBFFFB	0.0000	FBFFBF	
0.0006	FFFBBB	0.0001	FBBBFF	0.0000	FBFBBB	0.0000	BFFBFF	
0.0006	BBBFFF	0.0001	BBFFFB	0.0000	FBBBFB	0.0000	BFBFBB	
0.0004	BBBBBF	0.0000	BFBBBB	0.0000	BBBFBF	0.0000	FBFBBF	
0.0004	BBFFFF	0.0000	BBBBFB	0.0000	FFBBFB	0.0000	BFBFFB	
0.0003	BBBBFF	0.0000	BBFBBB	0.0000	BBFFBF	0.0000	FBFBFF	
0.0003	BFFFFF	0.0000	BFFFFB	0.0000	BFFFBF	0.0000	BFBBFB	
0.0001	BBBFBB	0.0000	FFFBBF	0.0000	BFBFFF	0.0000	BBFBFB	
0.0001	FBBFFF	0.0000	FFBBFF	0.0000	FFFBFB	0.0000	BFFBFB	
0.0001	FBBBBF	0.0000	FBBFBB	0.0000	BFBBBF	0.0000	FBFBFB	
0.0001	BBFFBB	0.0000	BFFBBB	0.0000	BBFBBF	0.0000	BFBFBF	

Next Time

- How do we get at these other questions about an HMM?
- What if my observations are corrupted (i.e. there is noise in my observed sequence)?
- What if I don't know the parameters of my HMM model (emission, transition, and observation noise probabilities)?
- Leave the Casino to find a biological application

