Chapter 7 - Pattern Matching

J. Matthew Holt
holtjma@cs.unc.edu
Sequence Alignment

- Sequencing data
 - Millions to billions of reads
 - Typically 100+ basepairs
- Reference genome - millions to billions of basepairs
- Where does a read best match the reference genome?

Reference: ACGAAACAAGTAGTCCCAGTACGTACATGCAAGT
Read 1: GTACATG
Read 2: CAAGTAG
Read 3: CCCAGTA
...
...
Pattern Matching Problem

- Goal: Find all occurrences of a pattern in a text
- Input:
 - Pattern \(p: p_1p_2...p_n \)
 - Text \(t: t_1t_2...t_m \)
- Output: All positions \(1 \leq i \leq (m - n - 1) \) such that the \(n \)-letter substring starting at \(i \) matches the pattern \(p \)
- Motivation: given a sequencing read (a pattern) can we match it to a reference genome (a text)
Exact pattern matching: Brute-force approach

p - the pattern to search for
t - the text to search through

```python
def bruteForcePatternMatching(p, t):
    ret = []
    for x in xrange(0, len(t)-len(p)+1):
        if t[x:x+len(p)] == p:
            ret.append(x)
    return ret
```
Brute-force Example

Text: ACGAGATT
Pattern: GAG

01234567
ACGAGATT
GAG
GAG
GAG
GAG
GAG
GAG

Returns [2, 4]
Brute-force pattern matching performance

- Performance:
 - m - length of the text t
 - n - the length of the pattern p
 - Looping - $O(m)$ total loops
 - Comparison - $O(n)$ per loop
 - Total cost - $O(mn)$ per pattern

- In practice, total cost is closer to $O(m)$ because comparisons terminate early

- Worst-case example:
 - $p =$ “AAAT”
 - $t =$ “AAAAAAAAAAAAAAAAAAAAAAAAAAAT”

- What if we have multiple patterns?
Exact Pattern Matching
Can we do better?

Text: MISSISSIPPISSI
Pattern: ISSI

• What if we do some pattern pre-processing?
• We can skip some start points

MISSISSIPPISSI
 ISSI
 ISSI
 ISSI
Multiple Pattern Matching Problem

- Goal: find all occurrences of a set of patterns (reads) in a text (reference genome)
- Input:
 - A collection of patterns P that are at most d character long
 - A text t of length m
- Output: All pairs of index $0 \leq i \leq m-1$ and pattern p in P such that the suffix starting at i begins with pattern p
Keyword Tries

- Input: a collection of patterns or keywords
- Output: a tree-like structure where edges are characters and terminal nodes represent a pattern
- Example:
 - apple
 - apropos
 - banana
 - bandana
 - orange
Prefix Trie Matching

- Input: a text t and a trie P of patterns
- Output: any patterns that match a prefix of t
Prefix Trie Matching Examples

Thread **appeal**
Not terminal

Thread **apple**
Terminal

Thread **apples**
Terminal
Prefix Trie Matching (cont.)

- Input: a text t and a trie P of patterns
- Output: any patterns that match a prefix of t
- Computation:
 - Requires threading t through P
 - Worst case is length of longest pattern in P (or the depth d of P)
 - $O(d)$ time
Multiple Pattern Matching

\(t \) - the text to search through
\(P \) - the trie of patterns to search for

```python
def multiplePatternMatching(t, P):
    ret = []
    for x in xrange(0, len(t)):
        pattern = PrefixTrieMatching(t[x:], P)
        if pattern != None:
            ret.append(((x, pattern))
    return ret
```
Multiple Pattern Matching (cont.)

```python
multiplePatternMatching("bananapple", P)
PrefixTrieMatching("bananapple", P) = “banana”
PrefixTrieMatching("ananapple", P) = None
PrefixTrieMatching("nanapple", P) = None
PrefixTrieMatching("anapple", P) = None
PrefixTrieMatching("napple", P) = None
PrefixTrieMatching("apple", P) = “apple”
PrefixTrieMatching("pple", P) = None
PrefixTrieMatching("ple", P) = None
PrefixTrieMatching("le", P) = None
PrefixTrieMatching("e", P) = None
ret = [(0, “banana”), (5, “apple”)]
```
Can we do better?

Remember our earlier speedup

Can add “failure edges” to our trie

“Aho-Corasick” Algorithm
Multiple Pattern Matching (cont.)

- Run time
 - \(m \) - \(\text{len}(t) \)
 - \(d \) - max depth of \(P \) (longest pattern in \(P \))
 - \(O(md) \) to find all patterns
 - Can be decreased further to \(O(m) \) using Aho-Corasick Algorithm (see pg 353)

- Memory issues
 - Tries require a lot of memory
 - Practical implementation is challenging
 - Genomic reads - millions to billions of patterns typically of length \(\geq 100 \)
Preprocess genome into suffix tree

- **Input:**
 - A single long string (reference genome)
 - Example - “ATCATG”

- **Output:**
 - A tree containing all suffixes of the input
 - The tree is also compressed
Preprocess genome into suffix tree (cont.)

- A **suffix trie** is a keyword trie of all suffixes (left figure).
- A **suffix tree** compresses the trie by combining nodes with out degree 1:
 - Edges represent a substring of text.
 - All internal nodes have at least 3 edges.
 - All leaf nodes are labeled with an index.
Suffix Tree (cont.)

- Nodes (fixed alphabet) - pointer to edge for each letter
 - DNA - 4 letters
 - ~16 bytes per node
- Edges are typically stored as (offset, length) pairs
 - “AT” = (0, 2)
 - “G” = (5, 1)
 - “CATG” = (2, 4)
 - ~8 bytes per edge
Suffix trees summary

- Input: text of length m
- Computation
 - $O(m)$ to compute a suffix tree
 - Does not require building the suffix trie first
- Memory
 - $O(m)$ - nodes are stored as offsets and lengths
 - Huge hidden constant, best implementations requires about 20^*m bytes
 - 3 GB human genome = 60 GB RAM
Suffix arrays

- Related to suffix trees, but reduced memory
 - Keep string on disk $O(m)$
 - Keep array of pointers indicating sorted order of suffixes $O(m \times \log(m))$ bits
 - In practice the $\log(m)$ is typically 4 bytes
- Computation
 - Can also be done in $O(m)$ time
 - Uses $O(m)$ memory; approximately 12 GB for the human genome

The suffix array (and suffixes) for the string “panamabanananas$”
Constructing Suffix Array
(naive method)

```python
def buildSuffixArray(t):
    sa = sorted(range(len(t)), cmp=lambda i,j: (-1 if t[i:] < t[j:] else 1))
    return sa
```

- Creates a list of indices
- Sorts the list using a custom comparator
- Returns a list of indices sorted by the suffix starting at that position
- Note: this basic code is not recommended for real applications; runs in $O(m^2 \times \log(m))$ time
Searching suffix arrays

• Binary search
 • Pattern length d
 • $O(\log(m))$ comparisons
 • Worst case is $O(d)$ operations per comparison
 • $O(d \times \log(m))$ per pattern

13 $$
5 \text{abananas}$
3 \text{amabanananas}$
1 \text{anamabanananas}$
7 \text{ananas}$
9 \text{anas}$
11 \text{as}$
6 \text{bananas}$
4 \text{mabanananas}$
2 \text{namabanananas}$
8 \text{nanas}$
10 \text{nas}$
0 \text{panamabanananas}$
12 s
Searching suffix arrays

def searchFirst(sa, t, p):
 l = 0
 h = len(t)
 while l < h:
 m = (l+h)/2
 if t[sa[m]:] < p:
 l = m+1
 else:
 h = m
 return l

searchFirst(sa, t, ‘am’)
(0, 14) -> (0, 7) -> (0, 3) -> (2, 3) -> (2, 2)
return 2
def searchLast(sa, t, p):
 l = 0
 h = len(t)
 while l < h:
 m = (l+h)/2
 if t[sa[m]:sa[m]+len(p)] <= p:
 l = m+1
 else:
 h = m
 return l-1
Summary

m - length of text
d - max length of pattern
x - number of patterns

<table>
<thead>
<tr>
<th>Method</th>
<th>Storage Cost</th>
<th>Single Pattern Search Time</th>
<th>Multiple Pattern Search Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brute Force</td>
<td>$O(m)$</td>
<td>$O(dm)$</td>
<td>$O(xdm)$</td>
</tr>
<tr>
<td>Keyword Tries</td>
<td>$O(xd)$</td>
<td>$O(dm)$</td>
<td>$O(dm)$</td>
</tr>
<tr>
<td>Suffix Trees</td>
<td>$O(m)$ [20m bytes]</td>
<td>$O(d)$</td>
<td>$O(xd)$</td>
</tr>
<tr>
<td>Suffix Arrays</td>
<td>$O(m \times \log(m))$ [4m bytes]</td>
<td>$O(d \times \log(m))$</td>
<td>$O(xd \times \log(m))$</td>
</tr>
</tbody>
</table>
Next class: Burrows-Wheeler Transform

\(m \) - length of text
\(d \) - max length of pattern
\(x \) - number of patterns

<table>
<thead>
<tr>
<th>Method</th>
<th>Storage Cost</th>
<th>Single Pattern Search Time</th>
<th>Multiple Pattern Search Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brute Force</td>
<td>(O(m))</td>
<td>(O(dm))</td>
<td>(O(xdm))</td>
</tr>
<tr>
<td>Keyword Tries</td>
<td>(O(xd))</td>
<td>(O(dm))</td>
<td>(O(dm))</td>
</tr>
<tr>
<td>Suffix Trees</td>
<td>(O(m)) [20m bytes]</td>
<td>(O(d))</td>
<td>(O(xd))</td>
</tr>
<tr>
<td>Suffix Arrays</td>
<td>(O(m\log(m))) [4m bytes]</td>
<td>(O(d\log(m)))</td>
<td>(O(xd\log(m)))</td>
</tr>
<tr>
<td>BWT</td>
<td>(O(m)) [often (m) bits]</td>
<td>(O(d))</td>
<td>(O(xd))</td>
</tr>
</tbody>
</table>