Perfect Phylogeny

Not in textbook
• Thus far
 – distance-based evolutionary trees
 • Additive guarantees that the tree would reproduce all pairwise distances, but not all distance matrices are additive
 • Sequences → Distances → Sequences
 – character-based evolutionary trees
 • Trees directly from sequences
 • The most general version is hard (Large parsimony)

• Infinite Sites Model
• Perfect Phylogeny
• Local vs Global Phylogenetic Trees
Character State Matrix M

- M has n rows (samples)
- M has m columns (characters)
- M_{ij} denotes the state object i has for character j
- Sequence Diversity Patterns (SDPs) often reoccur

same SDP
Infinite Sites Model

- Assumes mutations are rare events
- Assumes DNA sequences are large
- Multiple mutations at the same site are extremely rare
- Infinite Sites Model assumes that multiple mutations never occur at the same sequence position
- Thus, all states are "Binary" or "Biallelic"
A Different Kind of Tree

- Unrooted “Perfect Phylogeny” Tree
- Nodes correspond to sample sequences (haplotypes), both current and ancestral
- Edges correspond to actual mutations (SNPs)
- Removal of an edge creates a bipartition (each part is distinguished by a character at some position)
- SDPs can occur multiple times, and their frequency can be used as a edge weight
- Tree leaves correspond to mutations (allele variants) that are unique to a sequence, i.e. a SDP with only one minority allele instance, *private*
Unrooted Trees

• Unrooted phylogenetic trees are less specific than evolutionary trees
• The edges are undirected, thus the direction from ancestor to descendent are unknown
• All but one leaf, however, and possibly all leaves (if the root is an interior node) must be descendents
• Slightly fewer labeled unrooted trees than labeled rooted tree

\[
\frac{(2n-4)!}{2^{n-2}(n-2)!} \quad \text{vs} \quad \frac{(2n-3)!}{2^{n-2}(n-2)!}
\]

• Moreover, any node can be an “observed” sample in a phylogenetic tree whereas only leaf nodes are observed an evolutionary tree
Three different evolutionary (rooted) trees that are consistent with a common phylogenetic (unrooted) tree
Building a Phylogenetic Tree

- Assume we only have direct access to current haplotypes
- Construct a pair-wise distance matrix between haplotypes using Hamming distances
- Add smallest edge between all nodes which do not introduce a loop
- If the smallest distance is greater than 1 add d-1 “hidden” nodes between the pair so that adjacent nodes have a hamming distance of 1
- Augment the distance matrix with the new nodes and claim the introduced edges
- Repeat finding the smallest distance, and augmenting until the graph is connected
Our tree construction method will not work for any arbitrary set of character sequences; it only works for those that satisfy the assumptions of the infinite sites model.

Under the assumption of the infinite sites model all SNP pairs exhibit the property no more that 3 out of the possible 4 allele combinations occur.

Direct consequence of only one mutation per site.

Showing that all SNP pair combinations satisfy the four gamete test is a necessary and sufficient condition for there to exist a perfect phylogeny tree.

<table>
<thead>
<tr>
<th></th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
<th>S_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>H_4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Questions

• Does there exist SDPs that are compatible with all others?

Private SNPs are compatible with any other SNP

• Given N distinct haplotype sequences resulting from an infinite sites model what is minimum number of SDPs?

N-1 edges are the fewest necessary to connect N haplotypes into a “linear” tree. How many singleton SNPs occur in such a tree? 2

• Given N distinct haplotype sequences resulting from an infinite sites model what is maximum number of SDPs?

2N-3 edges, the number of edges in an unrooted tree with N leaves
Exercise

Consider the following SNP panel

<table>
<thead>
<tr>
<th></th>
<th>S₁</th>
<th>S₂</th>
<th>S₃</th>
<th>S₄</th>
<th>S₅</th>
<th>S₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₁</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>H₂</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H₃</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H₄</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H₅</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Satisfies the four gamete test?
Construct the tree
Is the SDP 11001^T possible?
Complications

• There are two issues that limit the use of Perfect Phylogeny, both are violations of our infinite-sites model assumptions
 – In addition to mutations, haplotype diversity is generated by recombination, exchange of subsequences between haplotypes
 – Mutations reoccur at the same position (Homoplasy)

• Thus, global (over the entire genome) perfect phylogenies are rare, but local perfect phylogenies are common

• How do we locate recombinations and recurrent mutations?
Non-sequence Complications

• **Evolutionary Convergence:**
 - Wings on birds and bats
 - Fins on Seals and Fish

• **Evolutionary Reversals:**
 - Fish → Lizard → Snake
 - Fish → Mammal → Manatee
 - (gain and later loss of legs)

• Such paths also violate the infinite sites model
SNP Compatibility

• How do we find local genomic regions where our assumptions are valid?
• Apply 4-gamete test
• Issues
 – Can we efficiently find all compatibility intervals
 – How many intervals? (fewest necessary to cover the entire genome)
 – Unique?
 – Common properties
Algorithms

• Left-to-right scan
• Is this solution unique?
Algorithms

- Left-to-right scan
- Is this solution unique? No.
- Right-to-Left scan

- Given that the solution is not unique, which do we choose?
- The most parsimonious
• Questions
 • Of all scans, which has the fewest intervals?
 • Is there a solution with fewer intervals?
• What is a better solution?
 – Clearly the intervals could be larger
 – What is the maximal size of the intervals?
Algorithms

• Theorem
 – Left-to-right and right-to-left scans have the same number of intervals, k
 – k is the minimum number of intervals possible
Cores

- The interval overlaps tell us something important
 - Pair the L-R and R-L scan intervals from left to right. The overlap of these pairs are the interval cores.
 - The i^{th} core essentially is the SNPs that the i^{th} interval of the L-R and R-L scan agree should be included in the i^{th} interval of any minimal set of intervals
 - A refinement of Parsimonious:
 - Use this to find the minimal set of maximally-sized intervals
Uber Scan

• But first, let's backup momentarily
 – The left-to-right scan found a minimal set of non-overlapping intervals
 – Can we find the set of all intervals of maximal size?
 – These were clearly not found in our left-to-right or right-to-left scans
Uber Scan

- Simple modification to the left-to-right scan algorithm
 - Instead of restarting when an incompatibility is found, only remove a portion of it
 - Specifically remove everything before (in the scanning direction) and including the closest newly introduced incompatibility
 - Open a new interval starting at the first SNP in the queue
 - Continue as before
Uber Scan

- Properties
 - Will contain more than the minimal number of intervals, k
 - Each interval is maximal in size (bounded on each side by an incompatibility)
 - Maintains a linear runtime
Max-\(k\) cover

• Minimal set of \(k\) maximally-sized intervals
 – Must be a subset of the Uber scan, since Uber includes all intervals of maximal size
 – Search all subsets of size \(k\)?

\[\binom{|\text{Uber}|}{k}\]

• No. Combinatorial Explosion
• Instead restructure the problem as a graph problem
Max-k cover

- Minimal set of k maximally-sized intervals
 - We know any minimal set must include the cores
 - Find all intervals from the Uber scan that overlap each core
 - Construct a k-partite graph
 - Vertices are intervals
 - Edges are weighted with the amount of overlap
 - Solve for maximal path (dynamic program)
Max-k cover

- Properties
 - May not be unique
 - Theoretical runtime $O(ku)$, where u is the number of intervals in Uber scan
 - In practice, we never see more than 3 intervals in any part, thus $O(k)$
Uses

- Phylogeny trees
 - Represent the data with the fewest possible trees
 - Maximal intervals provide maximal support for each tree

- Recombination
 - k gives us a lower bound on the minimum number of recombinations needed to make the dataset
 - Although, not very tight
 - But it scales to large datasets
Critical SNPs

• How stable are these intervals?
 • If we remove any given SNP, will the minimal number of intervals needed, k, be reduced?

• Algorithm
 – Only consider the flagging SNPs of the Uber intervals
 • Intervals are bounded by incompatibilities. Unless they are removed, the interval cannot change size
Some Context

346866 of 689472 Perlegen SNPs on Chr 1, 60 Billion pairwise relationships, >7.5 GBytes
Chromosome 14
15059098-15230790

Trees based on
Perfect Phylogenies
Local to Global Trees

• Given a forest of local phylogeny trees, how do we construct a global tree?
• Generally, by combining tree metrics (Sum of distances from i to j) across all trees and then applying either neighbor joining or UPMGA
• Evolution is more complicated than a simple tree
 – Common introgressions near species splits
 – Gene flows when branches interact